Math, asked by jaisinghbisht, 11 months ago

find the LCM and HCF of 120 and 144

Answers

Answered by as1965286p7d7zu
0

Answer:

Here is your answer,

By using fundamental theorem of multiplication we will find the LCM AND HCF OF THOSE GIVEN NUMBERS,

Those given Numbers whose we'll have to find the answer is 120 & 144

Step-by-step explanation:

hence,

 >>  120 = 2 x 2 x 2 x 3 x 5

 >>  144 = 2 x 2 x 2 x 2 x 3 x 3

LCM(LOWEST COMMON FACTOR) = 2 x 2 x 2 x 2 x 3 x 3 x 5  =>> 720

HCF(HIGHEST COMMON FACTOR) = 2 x 2 x 2 x 3 =>>24

I HOPE IT HELPS.

Answered by Anonymous
11

AnswEr :

\bf{\red{\underline{\underline{\bf{Given\::}}}}}}}

The L.C.M. and H.C.F. of 120 and 144.

\bf{\purple{\underline{\underline{\bf{Explanation\::}}}}}}}

\bf{\large{\underline{\sf{L.C.M.(Lowest\:Common\:Multiple\:)\:of\:120\:and\:144}}}}}}

\begin{array}{l|r}2 & 120,144\\ \cline{2-2} 2 & 60,72\\ \cline{2-2} 2 & 30,36\\ \cline{2-2} 2& 15,18\\ \cline{2-2} 3 & 15, 9\\ \cline{2-2}3& 5,3\\ \cline{2-2} 5& 5,1\\ \cline{2-2} & 1,1\end{array}}

L.C.M = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720.

\bf{\large{\underline{\sf{H.C.M.(Highest\:Common\:Factor\:)\:of\:120\:and\:144}}}}}}

\begin{array}{l|r}2 & 120\\ \cline{2-2} 2 & 60\\ \cline{2-2} 2 & 30\\ \cline{2-2} 3& 15\\ \cline{2-2} 5 & 5\\ \cline{2-2}& 1\end{array}}

&

\begin{array}{l|r}2 & 144\\ \cline{2-2} 2 & 72\\ \cline{2-2} 2 & 36\\ \cline{2-2} 2& 18\\ \cline{2-2} 3 & 9\\ \cline{2-2}3& 3\\ \cline{2-2} & 1\end{array}}

H.C.F of 120 = 2 × 2 × 2 × 3 × 5

H.C.F of 144 = 2 × 2 × 2 × 2 × 3 × 3

Common factor of 120 & 144 = 2 × 2 × 2 × 3 = 24..

Similar questions