Math, asked by asidhabegumismudeen, 2 months ago

find the LCM and HCF of 332 and 24 and verify that product of number is equal to the product LCM and hcf​

Answers

Answered by sweethearts29617
1

Answer:

this answer may help you

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\red{\bf :\longmapsto\:Prime  \: factorization \: of \: 332}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:332\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:166 \:\:}} \\ {\underline{\sf{83}}}& \underline{\sf{\:\:83 \:\:}} \\ {\sf{}}&\underline{\sf{\:\:1\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\red{\bf :\longmapsto\:Prime  \: factorization \: of \: 332 =  {2}^{2} \times 83 }

\blue{\bf :\longmapsto\:Prime  \: factorization \: of \: 24}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:24\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:12 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:6 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\blue{\bf :\longmapsto\:Prime  \: factorization \: of \: 24 =  {2}^{3}  \times 3}

So,

 \green{\bf :\longmapsto\:HCF(332, 24) =  {2}^{2} = 4}

and

 \green{\bf :\longmapsto\:LCM(332, 24) =  {2}^{3} \times 3 \times 83= 1992}

Verification

Consider,

 \green{\sf :\longmapsto\:LCM(332, 24) \times HCF(332, 24)= 1992 \times 4 = 7968}

Also,

\rm :\longmapsto\:Let \: a = 332 \: and \: b = 24

So,

 \red{\bf :\longmapsto\:a \times b}

 \red{\rm :\longmapsto\:\bf \: 332 \times 24 = 7968}

Hence,

 \:  \:  \:  \underbrace{\boxed{ \rm \: HCF(332, 24) \times LCM(332, 24) = 332 \times 24}}

Additional Information :-

Let us assume two natural numbers a and b then

  • 1. HCF(a, b) < = (a, b)

  • 2. LCM (a, b) > = (a, b)

  • 3. HCF always divides LCM.
Similar questions