Math, asked by saniyasheikh07k, 1 month ago

find the LCM and hcf of pairs of integers 336 and 54 , also find that LCM ×HCF => Product of the two numbers. ​

Answers

Answered by ABHI1441148NDA
1

Step-by-step explanation:

LCM ( 336, 54 ) = 2⁴ × 3 × 7 = 3024. HCF ( 336, 54 ) = 2 × 3 = 6. Now, LCM × HCF = Product of two numbers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\red{ \bf \: Prime \: Factorization \: of \: 336}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:336\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:168\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:84\:}}\\\underline{\sf{2}}&\underline{\sf{\:\:42\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:21\:}}\\\underline{\sf{7}}&\underline{\sf{\:\:7\:}}\\\underline{\sf{}}&{\sf{\:\:1\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\bf\implies \:336 =  {2}^{4} \times 3 \times 7

\red{ \bf \: Prime \: Factorization \: of \: 54}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:54\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:27\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:9\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:3\:}}\\\underline{\sf{}}&{\sf{\:\:1\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\bf\implies \:54 =  {3}^{3} \times 2

So, we have prime factorization of 336 and 54 as

\bf\longmapsto\:336 =  {2}^{4} \times 3 \times 7

\bf\longmapsto\:54 =  {3}^{3} \times 2

Thus,

\bf\implies \:HCF(336, 54) = 2 \times 3 = 6

\bf\implies \:LCM(336, 54) =  {2}^{4}  \times  {3}^{3} \times 7  = 3024

Now,

\bf :\longmapsto\:LCM \times HCF = 3024 \times 6 = 18144

Let

  • a = 336

  • b = 54

So,

\bf :\longmapsto\:a \times b = 336 \times 54 = 18144

\bf :\implies\:LCM \times HCF = a  \times b

Similar questions