Math, asked by ss3466405, 1 month ago

find the LCM and HCF of the following pairs of integers and verify that LCM and HCF = product of the two number 336 and 54 ​

Answers

Answered by itsPapaKaHelicopter
1

Answer:

Given:- numbers are 336 and 54

\sf \colorbox{god} {Prime factorisation of 336 and 54 are}

⇒336  = (2) ×(168) =  (2) × (84)

⇒ (2) × (2) × (2) × (42)

= (2) × (2) × (2) × (2) × (21)

⇒ (2 {)}^{4}  \times (3) \times (7)

 \textbf{and}  \:  \: 54 = (2) \times (27) = (2) \times (3) \times (9)

⇒(2)  \times (3) \times (3) \times (3) = (2) \times (3 {)}^{3}

\text{HCF \: (336 ,54)}

\sf \colorbox{god} {Product of least powers of common factors}

Verification:

\sf \colorbox{god} { \: LCM \: (336  ,54)  } \times \sf \colorbox{god} {HCF \: 336,54)}

⇒6 \times 3024 = (2) \times (3) \times (2 {)}^{4}  \times (3 {)}^{3}  \times (7)

⇒(2 {)}^{4}  \times (3) \times (7) \times (2) \times (3 {)}^{ 3}  = 336 \times 54

\sf \colorbox{god} {= Product of given numbers.}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ}

Similar questions