Math, asked by anu835gg, 1 year ago

find the lcm of. 1/(a-b)(a-c) + 1/(b-c)(b-a) + 1/(c-a)(c-b)​

Answers

Answered by ziya64
4

Answer:

1/((a-b)(a-c))+1/((b-c)(b-a))+1/((c-a)(c-b))

Final result :

0

Step by step solution :

Step 1 :

Equation at the end of step 1 :

1 1 1

(—————————————+—————————————)+———————————

((a-b)•(a-c)) ((b-c)•(b-a)) (c-a)•(c-b)

Step 2 :

1

Simplify —————————————————

(c - a) • (c - b)

Equation at the end of step 2 :

1 1 1

(—————————————+—————————————)+———————————

((a-b)•(a-c)) ((b-c)•(b-a)) (c-a)•(c-b)

Step 3 :

Equation at the end of step 3 :

1 1 1

(—————————————+———————————)+———————————

((a-b)•(a-c)) (b-c)•(b-a) (c-a)•(c-b)

Step 4 :

1

Simplify —————————————————

(b - c) • (b - a)

Equation at the end of step 4 :

1 1 1

(—————————————+———————————)+———————————

((a-b)•(a-c)) (b-c)•(b-a) (c-a)•(c-b)

Step 5 :

Equation at the end of step 5 :

1 1 1

(———————————+———————————)+———————————

(a-b)•(a-c) (b-c)•(b-a) (c-a)•(c-b)

Step 6 :

1

Simplify —————————————————

(a - b) • (a - c)

Equation at the end of step 6 :

1 1 1

(———————————+———————————)+———————————

(a-b)•(a-c) (b-c)•(b-a) (c-a)•(c-b)

Step 7 :

Calculating the Least Common Multiple :

7.1 Find the Least Common Multiple

The left denominator is : (a-b) • (a-c)

The right denominator is : (b-c) • (b-a)

Number of times each Algebraic Factor

appears in the factorization of:

Algebraic

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

a-b 1 1 1

a-c 1 0 1

b-c 0 1 1

Least Common Multiple:

(a-b) • (a-c) • (b-c)

Calculating Multipliers :

7.2 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = b-c

Right_M = L.C.M / R_Deno = -1•(a-c)

Making Equivalent Fractions :

7.3 Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. b-c

—————————————————— = —————————————————————

L.C.M (a-b) • (a-c) • (b-c)

R. Mult. • R. Num. -1 • (a-c)

—————————————————— = —————————————————————

L.C.M (a-b) • (a-c) • (b-c)

Adding fractions that have a common denominator :

7.4 Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

b-c + -1 • a-c b - a

————————————————————— = ———————————————————————————

(a-b) • (a-c) • (b-c) (a - b) • (a - c) • (b - c)

Equation at the end of step 7 :

(b-a) 1

—————————————————+———————————

(a-b)•(a-c)•(b-c) (c-a)•(c-b)

Step 8 :

8.1 Rewrite (a-b) as (-1) • (b-a)

Canceling Out :

8.2 Cancel out (b-a) which now appears on both sides of the fraction line.

Making Equivalent Fractions :

8.3 Rewrite the two fractions into equivalent fractions

L. Mult. • L. Num. -1

—————————————————— = —————————————

L.C.M (a-c) • (b-c)

R. Mult. • R. Num. -1 • -1

—————————————————— = —————————————

L.C.M (a-c) • (b-c)

Adding fractions that have a common denominator :

8.4 Adding up the two equivalent fractions

-1 + -1 • -1 0

————————————— = —————————————————

(a-c) • (b-c) (a - c) • (b - c)

Final result :

0

hope you understand

MARK ME AS A BRAINLIAST

Similar questions