Math, asked by sankalp6313, 1 month ago

Find the lcm of 290, 360,480

Answers

Answered by Nobita221
1

The instructions to find the LCM of 290, 360 and 480 are the next:-

1)Decomposing All Numbers into Prime Factors:-

290 |2 | \\145  |5|  \\ 29 |29|  \\ 1 |0|

_____________________________

360 |2|  \\ 180 |2|  \\ 90|2|  \\ 45  |3| \\ 15 |3|  \\5 |5|   \\ 1 |0|

_____________________________

480 |2|  \\ 240 |2|  \\ 120 |2|  \\ 60 |2| \\ 30 |2|  \\ 15 |3| \\ 5 |5|  \\ 1 |0|

_____________________________

2)Write All Numbers As The Product Of It's Prime Factors:-

prime \:  \: factors \:  \: of \:  \: 290 = 2 \: . \: 5  \: . \: 29 \\ prime \:  \: factors \:  \: of \:  \: 360 = 2 {}^{2}. \:  \: 3 {}^{2} . \:  \: 5 \\ prime \:  \: factors \:  \: of \:  \: 480 = 2 {}^{5} . \:  \: 3 \:   \: . \:  \: 5

3)Choose the common and Uncommon Prime Factors with the Greatest Exponent:-

common \:  \: prime \:  \: factors = 2 \:  \: and \:  \: 5 \\ common \: \:  prime \:  \: factors \:  \: with \:  \: the \:  \: greatest \:  \: exponent = 2 {}^{5} and \:  \: 5 {}^{1}  \\ uncommon \:  \:prime \:  \:  factors \:  \:  = 29 \:  \: and \:  \: 3 \\ uncommon \:  \: prime \:  \: factors \:  \: with \:  \: the \:  \: greatest \:  \: exponent = 29 {}^{1} and \:  \: 3 {}^{2}

4)Caluculate the Least Common Multiple Or LCM:-

remember \:  \: to \:  \: find \:  \: the \:  \: lcm \:  \: of \:  \: several \:  \: numbers \:  \: you \:  \: must \:  \: multiply \:  \: the \:  \: common \:  \: and \:  \: uncommon \:  \: prime \:  \: factors \:  \: with \:  \: the \:  \: greatest \:  \: exponent \:  \: of \:  \: those \:  \: numbers. \\  \\ lcm = 2 {}^{5} . \: 5 {}^{1} . \: 29 {}^{1} . \: 3 {}^{2} = 41760

NOBITA221✔

Similar questions