Math, asked by mirburhan4276, 11 months ago

Find the LCM of the following polynomials # a^8- b^8 and a^4- b^4×( a+b )

Answers

Answered by sanjeevk28012
12

The LCM of the polynomial is  ( a^{4} + b^{4} ) (a² + b² ) ( a + b ) ( a - b )

Step-by-step explanation:

Given as :

The two polynomials are

a^{8} - b^{8}                      ........1

( a^{4} - b^{4} ) (  a + b )               ..................2

To calculate the LCM of polynomials

According to question

Now, Expansion of polynomials

From polynomial 1

a^{8} - b^{8}  = (a^{4})^{2}  -  (b^{4})^{2}

            =[  (a^{4}) + (b^{4})  ] [ (a^{4}) - (b^{4}) ]

            = [ (a^{4}) + (b^{4})  ] [ (a^{2})^{2} - (b^{2})^{2}]

            = [ (a^{4}) + (b^{4})  ] [ { a² + b² } { a² - b² } ]

            = [ (a^{4}) + (b^{4})  ] [ { a² + b² } { ( a + b ) ( a - b ) } ]

            = ( (a^{4}) + (b^{4}) ) ( a² + b² )  ( a + b ) ( a - b )

From polynomial 2

( a^{4} - b^{4} ) (  a + b )  =  [ (a^{2})^{2} - (b^{2})^{2}] ( a + b )

                              =   [ { a² + b² } { a² - b² } ] ( a + b )

                              = [ { a² + b² } { ( a + b ) ( a - b ) } ] ( a + b )

                              = ( a² + b² )  ( a + b ) ( a - b ) ( a + b )

                              = ( a² + b² )  ( a + b )² ( a - b )

Now, LCM of the polynomial

LCM of two polynomial is the expression of lowest degree exactly divisible by each of given expression

So, From the expansion of both the polynomial , we get

LCM of the polynomial = ( a^{4} + b^{4} ) (a² + b² ) ( a + b ) ( a - b )

Hence, The LCM of the polynomial is ( a^{4} + b^{4} ) (a² + b² ) ( a + b ) ( a - b ) Answer

Similar questions