find the least integral value of k for which the equation x²-2(k+2)x+12+k² has real and distinct roots.
thank you
Answers
Answered by
1
Answer:
3
Step-by-step explanation:
For roots to be real and distinct, D>0
D>0
b²-4ac>0
(-2(k+2))²-4(12+k²)>0
4(k+2)²-48-4k²>0
4(k²+4+4k)-48-4k²>0
4k²+16+16k-48-4k²>0
16k-32>0
16k>32
k>2
Least integral value = 3
Answered by
1
Answer:
3
Step-by-step explanation:
for roots to be real and distinct,
DISCRIMINANT MUST BE GRATER THAN 0.
D>0
D= b² - 4ac
here b= -2(k+2)
a=1
c= 12+ k²
so, D= (-2)².(k+2)² -4(1)(12+k²) >0 [(a+b)²= a² + b² + 2ab]
4(k² + 4 + 4k) + 4(-12 - k²) >0 [×¼]
k² + 4 + 4k -12 -k² >0
4k -8 >0
4k > 8
k > 8/4
k>2
Least integral value of k=3
Similar questions
Accountancy,
23 days ago
Math,
1 month ago
Sociology,
1 month ago
Chemistry,
9 months ago
Chemistry,
9 months ago