English, asked by Anonymous, 9 months ago

Find the least number of six digits which is a perfect square find the perfect square also find the square root of so number obtained

#STAY HOME STAY SAFE​

thanks

Answers

Answered by Anonymous
27

\Large{\underline{\underline{\bf{Solution :}}}}

To Find :

We have to find the least number of six digits which is perfect square and we have to also find the square root of the number obtained.

__________________________

Solution :

For doing this question firstly we will find the smallest six digit number. And then its root.

Smallest six digit number = 1,00,000

Square root of smallest six digit number = \sf{\sqrt{100000}} = 316.22

\rule{150}{2}

Now,

Firstly, We will find square of the number which is nearest to 316.22 which are 316 and 317.

→ (316)²

→ 99856

But it is a five digit number.

\rule{150}{2}

Now,

→ (317)²

→ 1,00,489

\large{\implies{\boxed{\boxed{\sf{1,00,489}}}}}

\therefore 1,00,489 is the smallest six digit number which is a perfect square.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.19 cm}}\begin{picture}(12,4)\thicklines\put(12,40){$\#\:STAY\:HOME$}\put(11,35){$\#\:STAY\: SAFETY$}\put(20,20){\circle{10}}\put(19.5,21){\line(-1,0){1.5}}\put(20.5,21){\line(1,0){1.5}}\put(18.8,20.3){\circle*{0.7}}\put(21.1,20.3){\circle*{0.7}}\put(20,20.4){\line(0,-1){1.4}}\put(20.7,18.4){\line(-1,0){1.57}}\put(18.6,16.56){\line(0,-1){2}}\put(21.4,16.56){\line(0,-1){2}}\put(19,14.55){\line(-1,0){5}}\put(21,14.55){\line(1,0){5}}\put(14,14.55){\line(0,-1){16}}\put(26,14.55){\line(0,-1){16}}\put(14,14.55){\line(-4,3){5}}\put(26,14.55){\line(4,3){5}}\put(14,11){\line(-4,3){7.5}}\put(26,11){\line(4,3){7.5}}\put(9,18.3){\line(0,1){8.3}}\put(31,18.3){\line(0,1){8.3}}\put(33.5,16.6){\line(0,1){10}}\put(6.5,16.6){\line(0,1){10}}\put(3.5,26.5){\line(1,0){33}}\put(3.5,26.5){\line(0,1){20}}\put(3.5,46.5){\line(1,0){33}}\put(36.5,26.5){\line(0,1){20}}\put(14,-0.6){\line(1,0){12}}\put(14,-1.5){\line(1,0){12}}\put(14.4,-1.6){\line(0,-1){18.5}}\put(25.6,-1.6){\line(0,-1){18.5}}\put(20,-1.6){\line(0,-1){3}}\put(20,-4.6){\line(-1,-6){2.6}}\put(20,-4.6){\line(1,-6){2.6}}\put(14.4,-20){\line(-5,-6){3}}\put(25.6,-20){\line(5,-6){3}}\put(17.3,-20){\line(0,-1){3.7}}\put(17.3,-20){\line(-1,0){3}}\put(17.3,-23.6){\line(-1,0){6}}\put(22.6,-20){\line(0,-1){3.7}}\put(22.6,-20){\line(1,0){3}}\put(22.6,-23.6){\line(1,0){6}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions