Math, asked by snehalbhala5, 1 month ago

Find the least number that must be subtracted from 3129 to make it a perfect square.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given number is 3129.

Since, we have to find the least number that must be subtracted  to 3129 to make it a perfect square.

So, we use long division to find the remainder that should be subtracted  to the given number to make it a perfect square.

Thus,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:55 \:\:}}}\\ {\underline{\sf{5}}}& {\sf{\:\:3129 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 25  \:  \:  \:  \:  \:   \:}} \\ {\underline{\sf{105}}}& {\sf{\:\: \:  \:  \:  \: 629 \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 525   \:}} \\ {\underline{\sf{}}}& {\sf{ \:  \: \:\:104  \:\:}}  {\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

So, it means 104 must be subtracted  to 3129 to make it a perfect square.

Thus, Required number is 3129 - 104 = 3025.

So,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:55 \:\:}}}\\ {\underline{\sf{5}}}& {\sf{\:\:3025 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 25  \:  \:  \:  \:  \:   \:}} \\ {\underline{\sf{105}}}& {\sf{\:\: \:  \:  \:  \: 525 \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 525   \:}} \\ {\underline{\sf{}}}& {\sf{ \:  \: \:\:00  \:\:}}  {\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

Thus,

\rm \implies\:\boxed{ \tt{ \:  \:  \sqrt{3025} \:  \:  =  \:  \: 55 \:  \: }}

Similar questions