Math, asked by sahil8730, 1 year ago

Find the least number which must be added to 45 15600 to make them a perfect square​

Answers

Answered by BrainlyConqueror0901
93

Answer:

\huge{\boxed{\boxed{\sf{\sqrt{4515600+25}To\:make\:a\:perfect\:square}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

 \sqrt{4515600}  = 2124.99 \\ so \: this \: number \: is \: between \: the \:  \\  >  > square \: root \: of \: 2124 \: and \: 2125 \\  >  >  \: the \: question \: is \: for \: adding \:  \\  >  > so \: we \: take \: 2125 \: number \: for \\ >  >  \: this \: square \: root \\  = ) {2125}^{2}  = 4515625 \\ = )2125 =  \sqrt{4515625} -  -  -  -  - (1)   \\  = )2125 = \:   \sqrt{4515600 + x}   -  -  -  -  - (2) \\  = ) \sqrt{4515600 + x} =  \sqrt{4515625}  \\  = )4515600 + x = 4515625  \\  = )x = 4515625 - 4515625 \\   = )x = 25

\huge{\boxed{\boxed{\sf{\sqrt{4515600+25}To\:make\:a\:perfect\:square}}}}

Similar questions