Math, asked by shwethamallesh77, 8 months ago

find the least positive incongruent of the solution of 13x=9(mod 25)​

Answers

Answered by Lavanya819
0

Answer:

REMAINDER IS -6..

Here is the key observation which enables us to solve linear congruences. By definition of congruence, ax ≡ b (mod m) iff ax − b is divisible by m. Hence, ax ≡ b (mod m) iff ax − b = my, for some integer y. Rearranging the equation to the equivalent form ax − my = b we arrive at the following result..

Hope it helps

Answered by shadowsabers03
5

Given to solve,

\longrightarrow13x\equiv9\pmod{25}

Let,

\longrightarrow x\equiv9u\pmod{25}

\longrightarrow x=9u+25k,\quad k\in\mathbb{Z}

Then,

\longrightarrow13(9u+25k)\equiv9\pmod{25}

\longrightarrow13\times9u+13\times25k\equiv9\pmod{25}

As 13\times25k\equiv0\pmod{25},

\longrightarrow13\times9u\equiv9\pmod{25}

\longrightarrow13u\equiv1\pmod{25}

\longrightarrow13u=1-25m,\quad m\in\mathbb{Z}

\longrightarrow25m+13u=1\quad\quad\dots(i)

Now we make use of Euclid's Division Lemma.

\longrightarrow25=1\times13+12\quad\quad\dots(1)

\longrightarrow 13=1\times12+1\quad\quad\dots(2)

Then, from (2),

\longrightarrow 1=13-12

From (1),

\longrightarrow 1=13-(25-13)

\longrightarrow 1=13-25+13

\longrightarrow 1=25(-1)+13(2)\quad\quad\dots(ii)

Comparing (i) and (ii) we get,

\longrightarrow u=2

Then,

\longrightarrow x\equiv9u\pmod{25}

\longrightarrow x\equiv9\times2\pmod{25}

\longrightarrow x\equiv18\pmod{25}

So the solution is,

\longrightarrow x=25q+18,\quad q\in\mathbb{Z}

Since 0<18<25, the least positive incongruent is,

\longrightarrow\underline{\underline{x=18}}

Similar questions