Find the least value of 1/ 4−cos3
Answers
Answered by
0
Answer:
f(x)=cos3x−15cosx+8 where xϵ[
3
π
,
2
3π
]
f
′
(x)=−3sin3x+15sinx=0
⇒sin3x=5sinx
⇒3sinx−4sin
3
x=5sinx
⇒−4sin
3
x=2sinx
⇒2sinx+4sin
3
x=0
⇒2sinx[1+2sin
2
x]=0
Now, sinx=0 and sin
2
x=
2
−1
Not possible
x=π is the only choice because
xϵ[
2
π
,
2
3π
]
f
′′
(x)=−9cos3x+15cosx
f
′′
(π)=−6<0, therefore x=π is the point of maxima.
f(
2
π
)=cos
2
3π
−15cos
2
π
+8=8
f(π)=cos3π−15cosπ+8=−1+15+8=22
f(
2
3π
)=cos
2
9π
−15cos
2
3π
+8=8
x=π,f(x)=22 is the greatest value
x=
2
π
and x=
2
3π
,f(x)=8 is the least value.
PLZ MARK ME AS A BRAINLIST
Similar questions