Math, asked by saviourff69, 1 month ago

Find the least value of 1/ 4−cos3​

Answers

Answered by DEEPTHI09
0

Answer:

f(x)=cos3x−15cosx+8 where xϵ[

3

π

,

2

]

f

(x)=−3sin3x+15sinx=0

⇒sin3x=5sinx

⇒3sinx−4sin

3

x=5sinx

⇒−4sin

3

x=2sinx

⇒2sinx+4sin

3

x=0

⇒2sinx[1+2sin

2

x]=0

Now, sinx=0 and sin

2

x=

2

−1

Not possible

x=π is the only choice because

xϵ[

2

π

,

2

]

f

′′

(x)=−9cos3x+15cosx

f

′′

(π)=−6<0, therefore x=π is the point of maxima.

f(

2

π

)=cos

2

−15cos

2

π

+8=8

f(π)=cos3π−15cosπ+8=−1+15+8=22

f(

2

)=cos

2

−15cos

2

+8=8

x=π,f(x)=22 is the greatest value

x=

2

π

and x=

2

,f(x)=8 is the least value.

PLZ MARK ME AS A BRAINLIST

Similar questions