Find the least value of 2 sin^2 A+3 cos^2 A
Answers
Answered by
0
Answer:
Let
y
=
2
sin
2
θ
+
3
cos
2
θ
⇒
y
=
2
sin
2
θ
+
2
cos
2
θ
+
cos
2
θ
⇒
y
=
2
(
sin
2
θ
+
cos
2
θ
)
+
cos
2
θ
⇒
y
=
2
+
cos
2
θ
So y will be minimum when
cos
2
θ
=
0
Hence
y
min
=
2
Step-by-step explanation:
Answered by
1
Step-by-step explanation:
given, 2sin
2
θ+3cos
2
θ
=2−2cos
2
θ+3cos
2
θ
=2+cos
2
θ
Since we know that −1≤cosθ≤1 then 0≤cos
2
θ≤1,
So minimum value of cos
2
θ=0
Hence,minimum value of 2sin
2
θ+3cos
2
θ=2
Hope it helps uh ! plz mark it as BRAINLIEST!!!
Similar questions