Math, asked by kawtharshafa9051, 10 months ago

Find the least value of 3 sin x minus 4 cos x + 7.

Answers

Answered by Anonymous
60

\huge{\underline{\underline{\purple{♡Answer→}}}}

Let. y=13sinx−4cosx+7. ⇒y= 1(5(35sinx−45cosx)+7). Considering 35=cosα . So 45=sinα. And α=tan−1(43).

Let. y=13sinx−4cosx+7. ⇒y= 1(5(35sinx−45cosx)+7). Considering 35=cosα . So 45=sinα. And α=tan−1(43).Let y=13sinx−4cosx+7 ⇒y=1(5(35sinx−45cosx)+7) Considering 35=cosα So 45=sinα And α=tan−1(43) ⇒y=1(5(cosαsinx−sinαcosx)+7) ⇒y=1(5sin(x))

Similar questions