Find the least value of 3 sin x minus 4 cos x + 7.
Answers
Answered by
60
Let. y=13sinx−4cosx+7. ⇒y= 1(5(35sinx−45cosx)+7). Considering 35=cosα . So 45=sinα. And α=tan−1(43).
Let. y=13sinx−4cosx+7. ⇒y= 1(5(35sinx−45cosx)+7). Considering 35=cosα . So 45=sinα. And α=tan−1(43).Let y=13sinx−4cosx+7 ⇒y=1(5(35sinx−45cosx)+7) Considering 35=cosα So 45=sinα And α=tan−1(43) ⇒y=1(5(cosαsinx−sinαcosx)+7) ⇒y=1(5sin(x))
Similar questions