Math, asked by vikasshakya2705, 10 months ago

Find the least value of n such that 2+5+8+11+...to n terms >=200

Answers

Answered by shadowsabers03
1

2+5+8+11+\dots +(3n-1)\geq200\\\\\dfrac {n}{2}[2+3n-1]\geq200\\\\\dfrac {n}{2}[3n+1]\geq200\\\\3n^2+n\geq400\\\\3n^2+n-400\geq0\\\\\implies\ n\in\left (-\infty,\ \dfrac {-1-\sqrt{1^2-(4\cdot3\cdot(-400))}}{2\cdot3}\right]\cup\left [\dfrac {-1+\sqrt{1^2-(4\cdot3\cdot(-400))}}{2\cdot3},\ \infty\right)\\\\n\in\left (-\infty,\ \dfrac {-1-\sqrt{4801}}{6}\right]\cup\left [\dfrac {-1+\sqrt{4801}}{6},\ \infty\right)

Taking \sqrt{4801}\approx69,

n\in\left (-\infty,\ \dfrac {-1-69}{6}\right]\cup\left [\dfrac {-1+69}{6},\ \infty\right)\\\\n\in\left (-\infty,\ \dfrac {-35}{3}\right]\cup\left [\dfrac {34}{3},\ \infty\right)

But we know that n>0.

\therefore\ n\in\left [\dfrac {34}{3},\ \infty\right)\\\\n\in\left [11.\overline{3},\ \infty\right)

So we can say that the least possible value of n is \large\textbf{12}.

Similar questions