Math, asked by Anonymous, 2 months ago

Find the length and breadth of a room, if its area is 120 m² and perimeter 44m.​

Answers

Answered by ItzBrainlyBeast
25

\maltese\LARGE\textsf{\underline{ FiGuRe :-}}

\large\textsf{                                                               }

\large\textsf{Length = 12m}

\boxed{\begin{array}{ c c c c } \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \;\end{array}} Breadth = 10m

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Assume the length as ' x '}

\qquad\tt{:}\longrightarrow\large\textsf{Assume the breadth as ' y ' }

\large\textsf{                                                               }

↦ We know that :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Area}}_{\large\textsf{( \; Rectangle \; )}} = \large\sf{length \times breadth}$}}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Perimeter}}_{\large\textsf{( \; Rectangle \; )}} = \large\textsf{2 ( length + breadth )}$}}

\large\textsf{                                                               }

↦ According to the 1st Condition :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{xy = 120 ----- ( i )}}

\large\textsf{                                                               }

↦ According to 2nd Condition :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{2 ( x + y ) = 44}

\qquad\tt{:}\longrightarrow\large\textsf{x + y = $\cfrac{44}{2}$}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{x + y = 22 ----- ( ii )}}

\large\textsf{                                                               }

↦ Multiple eq. ( ii ) by x :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{x ( x + y ) = 22x}

\qquad\tt{:}\longrightarrow\large\textsf{x² + xy = 22x}

\qquad\tt{:}\longrightarrow\large\textsf{x² + 120 = 22x ----- [ From ( i ) ]}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{x² - 22x + 120 = 0}}

\large\textsf{                                                               }

↦ Solving the following equation :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{x² - 22x + 120 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{x² - 10x - 12x + 120 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{x ( x - 10 ) - 12 ( x - 10 ) = 0}

\qquad\tt{:}\longrightarrow\large\textsf{( x - 10 ) ( x - 12 ) = 0}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{x = 10 or x = 12}}

\large\textsf{                                                               }

↦ Substituting the value of x in ( ii ) :-

↦ When x = 10

↦ y = 22 - 10

y = 12

\large\textsf{                                                               }

↦ When x = 12

↦ y = 22 - 12

y = 10

\large\textsf{                                                               }

↦ So now two possibilities arise , but we know that most of the times length is greater than breadth :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf\textcolor{orange}{Length = 12m}

\qquad\tt{:}\longrightarrow\large\textsf\textcolor{orange}{Breadth = 10m}

\large\textsf{                                                               }

Answered by NishuKumari83
3

Answer:

refer the above attachment...

length and breadth of a room = 10,12

Attachments:
Similar questions