Math, asked by vrindasm2005, 11 months ago

Find the length of a chord which is at a distance of
5 cm from the centre of a circle of radius 10 cm.​

Answers

Answered by Avanti112
1

Step-by-step explanation:

hey friend your answer is above

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
6

\huge\sf\pink{Answer}

☞ Length of chord = 17.32 cm

\rule{110}1

\huge\sf\blue{Given}

✭ Radius of the circle (OA) = 10 cm

✭ OC = 5 cm

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Length of chord?

\rule{110}1

\huge\sf\purple{Steps}

\large\sf \star \ Diagram \ \star

\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(10,17){\line(5,0){30}}\put(25,30){\circle*{1}}\put(7,25){\sf\large{10 cm}}\put(25,17){\line(0,2){13}}\qbezier(10,17)(20,26)(25,30)\put(26,22){\sf 5 cm}\put(26,30){\sf O}\put(6,16){\sf A}\put(23,13){\sf C}\put(42,16){\sf B}\end{picture}

Let O be the centre of the circle whose radius is 10 cm

Let AB be a chord of the circle. Then,

\sf{\dashrightarrow AC = CB \:and \: OC \perp AB }

Applying Pythagoras theorem in ∆OCA

\underline{\boxed{\sf(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}

\bullet\underline{\textsf{As Per The Question}}

Substituting the given values,

\sf{\dashrightarrow (OA)^2 = (AC)^2 + (OC)^2 }

\sf{\dashrightarrow (10)^2 = (AC)^2 + (5)^2}

\sf{\dashrightarrow 100 = AC^2 + 25 }

\sf{\dashrightarrow 100 - 25 = AC^2}

\sf{\dashrightarrow \sqrt{75} = AC}

\red{\sf{\dashrightarrow 8.66 \: cm = AC }}

\sf{\dashrightarrow AB = AC + CB }

\sf{\dashrightarrow AB = 8.66 + 8.66}

\sf\orange{\dashrightarrow AB = 17.32 \: cm }

\rule{170}3

Similar questions