Find the length of a chord, which is at a distance of 5 cm from the
centre of a circle of radius 13 cm. 9th standard
Answers
Answer:
Let OA and OB be the radius of the circle
And AB be the chord
Also OD be the distance from the centre of the circle to the radius.
Given
radius=13.
distance=5
Now
In right triangle ODB,
OD²+DB²=OB²
In right triangle ODB, OD²+DB²=OB² 5²+DB² =13²
In right triangle ODB, OD²+DB²=OB² 5²+DB² =13² 25+DB²=169
In right triangle ODB, OD²+DB²=OB² 5²+DB² =13² 25+DB²=169 DB²=169-25
In right triangle ODB, OD²+DB²=OB² 5²+DB² =13² 25+DB²=169 DB²=169-25 DB²=144
In right triangle ODB, OD²+DB²=OB² 5²+DB² =13² 25+DB²=169 DB²=169-25 DB²=144 DB=√144
DB=12
**DB=DA(taking OD as an altitude which divides it equally)
therefore the length of the chord = DB+DA
=12+12=24
please thank n follow