Science, asked by nivedita2021, 2 months ago

Find the length of a conductor having resistance 2 ohms , resistivity 1.6 × 10^-8 ohms and radius 1× 10^-3 m. pls tell me I will mark you in brainlist​

Answers

Answered by rsagnik437
190

Answer :-

Length of the conductor is 392.5 m .

Explanation :-

We have :-

→ Resistance = 2 Ω

→ Resistivity = 1.6 × 10 Ωm

→ Radius = 1 × 10³ m

________________________________

Firstly, let's calculate the area of cross section of the conductor.

= πr²

= 3.14 × 10⁻³ × 10⁻³

= 3.14 × 10⁻⁶ m²

________________________________

Now, we know that :-

R = ρL/A

Substituting values, we get :-

⇒ 2 = [1.6 × 10⁻⁸ × L]/3.14 × 10⁻⁶

⇒ 2 × 3.14 × 10⁻⁶ = 1.6 × 10⁻⁸ × L

⇒ 6.28 × 10⁻⁶ = 1.6 × 10⁻⁸ × L

⇒ L = [6.28 × 10⁻⁶]/[1.6 × 10⁻⁸]

⇒ L = 3.925 × 100

L = 392.5 m

Answered by Anonymous
90

Answer:

Given :-

  • A resistance of 2 ohms, resistivity of 1.6 × 10-⁸ ohms and radius of 1 × 10-³ m.

To Find :-

  • What is the length of a conductor.

Formula Used :-

\clubsuit Area of Cross-section Formula :

\longmapsto \sf\boxed{\bold{\pink{Area\: of\: Cross-section\: =\: {\pi}r^2}}}\\

where,

  • r = Radius

\clubsuit Resistance Formula :

\longmapsto \sf \boxed{\bold{\pink{R =\: \dfrac{\rho L}{A}}}}\\

where,

  • R = Resistance
  • ρ = Resistivity
  • L = Length
  • A = Cross-sectional area

Solution :-

First, we have to find the area of cross-section :

Given :

  • Radius = 1 × 10-³ m
  • π = 22/7 × 3.14

According to the question by using the formula we get,

\implies \sf Area\: of\: Cross-sectional =\: 3.14 \times {(1 \times 10^{-3})}^{2}\\

\implies \sf Area\: of\: Cross-sectional =\: 3.14 \times 1 \times 10^{-3} \times 1 \times 10^{-3}\\

\implies \sf Area\: of\: Cross-sectional =\: 3.14 \times 10^{-3} \times 10^{- 3}\\

\implies \sf Area\: of\: Cross-sectional =\: 3.14 \times 10^{(- 3 + - 3)}\\

\implies \sf Area\: of\: Cross-sectional =\: 3.14 \times 10^{(- 3 - 3)}\\

\implies \sf \bold{\green{Area\: of\: Cross-sectional =\: 3.14 \times 10^{-6}\: m^2}}\\

Now, we have to find the length of a conductor :

Given :

  • Resistance = 2 ohm
  • Resistivity = 1.6 × 10-⁸ ohm m
  • Cross-section area = 3.14 × 10-⁶ m²

According to the question by using the formula we get,

\dashrightarrow \sf 2 =\: \dfrac{1.6 \times 10^{-8} \times L}{3.14 \times 10^{-6}}\\

By doing cross multiplication we get,

\dashrightarrow \sf 1.6 \times 10^{-8} \times L =\: 3.14 \times 10^{-6} × 2\\

\dashrightarrow \sf 1.6 \times 10^{-8} \times L =\: 6.28 \times 10^{-6}\\

\dashrightarrow \sf L =\: \dfrac{\cancel{6.28} \times 10^{-6}}{\cancel{1.6} \times 10^{-8}}\\

\dashrightarrow \sf L =\: 3.925 \times 10{^2}\\

\dashrightarrow \sf L =\: 3.925 \times 100\\

\dashrightarrow \sf L =\: \dfrac{3925}{1000} \times 100\\

\dashrightarrow \sf L =\: \dfrac{3925 \times 100}{1000}

\dashrightarrow \sf L =\: \dfrac{3925\cancel{00}}{10\cancel{00}}

\dashrightarrow \sf L =\: \dfrac{3925}{10}

\dashrightarrow \sf\bold{\red{L =\: 392.5\: m}}

\therefore The length of a conductor is 392.5 m .


rsagnik437: Good explanation! :)
Similar questions