Math, asked by sheetalthakkar2006, 9 months ago

find the length of a diagonal of rectangle of length 9cm and width 4cm​

Answers

Answered by reynarachelthomas20
0

Answer:

root 97 / 9.848

Step-by-step explanation:

Length=9cm

Width=4cm

To find a diagonal of rectangle we use pythagorous property.

Altitude^2+Base^2=Hypoteneuse^2

Base=4cm

Altitude=9cm

Hypoteneuse=x

9^2+4^2=x^2

81+16=x^2

97=x^2

=root 97

Answered by SarcasticL0ve
8

GivEn:

  • Length of Rectangle = 9cm

  • Breadth of Rectangle = 4cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Diagonal of Rectangle.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

\bf Here = \begin{cases} & \text{Length (l) = \bf{9 cm} }  \\ & \text{Breadth (b) = \bf{4 cm} }  \end{cases}

⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀

★ Formula to find Diagonal (d) of Rectangle is,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{ d = \sqrt{b^2 + l^2}}}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\small\sf \underline{Now,\;put\;the\;given\;values\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf d = \sqrt{(4)^2 + (9)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf d = \sqrt{16 + 81}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf d = \sqrt{97}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{d = 9.84\;cm\;(aprrox.)}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

DIAGRAM:

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\tt\large{A}}\put(7.7,1){ \tt\large{B}}\put(9.5,0.7){\sf{\large{9 cm}}}\put(11.5,1){ \tt\large{C}}\put(8,1){\line(1,0){3.5}}\put(8,1){\line(0,2){2}}\put(11.5,1){\line(0,3){2}}\put(8,3){\line(3,0){3.5}}\put(11.6,2){\sf{\large{4 cm}}}\qbezier(8,1)(8,1)(11.5,3)\put(11.5,3){ \tt\large{D}}\put(11.3,1){\line(0,2){0.2}}\put(11.3,1.2){\line(2,0){0.2}}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\therefore Here, BD is the diagonal of Rectangle which is 9.84 cm.

━━━━━━━━━━━━━━━━━━━━━

Additional Information:

  • Area of Rectangle = l × b

  • Perimeter of Rectangle = 2(l + b)
Similar questions