Math, asked by dikshagurav774, 6 months ago

find the length of arc area of a sectarian of a circle makes an angel of 70°at the centre and radius of circle is 21 cm.​

Answers

Answered by ItzLoveHunter
48

\huge{\boxed{\fcolorbox{cyan}{pink} {Answer}}}

\sf{GIVEN}

  • \sf{\:Radius \:(r) \:of \:the \:circle = 21cm}
  • \sf{\:Angle \:subtended \:by \:the \:given \:arc \:{θ} = 70°}

\sf{TO \:FIND}

  • \sf{\:Length \:of \:an \:arc \:area = ?¿}

The length of arc l and area A of a sector of angle θ in a circle of radius r are given by,

We know the formula ;

\sf\boxed{\:Length \:of \:an \:arc \:of \:an \:angle = \frac{θ}{360°} × 2πr}

\sf{:⟹ L = \frac{70}{360°} × 2 × \frac{22}{7} × 21}

\sf{:⟹ L = \frac{7 \cancel{0}}{36 \cancel{0}°} × 2 × \frac{22}{\cancel{7}_{1}} × \cancel{21}^{3}}

\sf{:⟹ L = \frac{7}{36°} × 2 × 22 × 3}

\sf{:⟹ L = \frac{7}{36°} × 132}

\sf{:⟹ L = \frac{924}{36°}}

\sf{:⟹ L = 25.66cm}

Let's find the area of the arc of angle ;)

We know the formula ;

\sf\boxed{Area \:of \:the \:angle = \frac{θ}{360°} × πr²}

\sf{:⟹ A = \frac{70}{360°} × \frac{22}{7} × (21)²}

\sf{:⟹ A = \frac{70}{360°} × \frac{22}{7} × (21)²}

\sf{:⟹ A = \frac{7 \cancel{0}}{36 \cancel{0}°} × 2 × \frac{22}{\cancel{7}_{1}} × \cancel{21}^{3} × 21}

\sf{:⟹ A = \frac{7}{\cancel{36}^{12}°} × 2 × 22 × \cancel{3}^{1} × 21}

\sf{:⟹ A = \frac{7}{\cancel{12}^{6}} × \cancel{2}^{1} × 22 × 21}

\sf{:⟹ A = \frac{7}{6} × 22 × 21 }

\sf{:⟹ A = \frac{3234}{6}}

\sf{:⟹ A = \cancel\frac{3234}{6}}

\sf{:⟹ A = 539cm²}

_______________________________________

  • \sf\boxed{Length \:of \:the \:arc \:angle = 25.66cm}

  • \sf\boxed{Area \:of \:the \:angle = 539cm²}

_______________________________________

Similar questions