Math, asked by sheryash21, 1 year ago

find the length of chord of Chord which is at distance of 12 cm from the centre of a circle of radius 13 cm​

Answers

Answered by btejaswini2003
45

Answer:

use pythogoras theorem ,

we know , perpendicular drawn from the center of the circle to the chord bisects the chord .

then , √(13)² -  (12)² = half the length of chord

half the length of chord =  √169-144

                                        = √25

                                       = 5 cm

then the length of the chord = 5 x 2

                                                = 10 cm

mark as brainliest

good luck

Answered by Anonymous
1

AB is chord of a circle with center O and OA is its radius OM ⊥ AB

Therefore, OA = 13 cm, OM = 12 cm

Now from right angled triangle OAM,

OA2 = OM2 + AM2 by using Pythagoras theorem,

132 = 122 + AM2

AM2 = 132 – 122

AM2 = 169 – 144

AM2 = 25

AM = 52

We know that OM perpendicular to AB

Therefore, M is the midpoint of AB

AB = 2 AM

AB = 2 (5)

AB = 10 cm

{\fcolorbox{blue}{black}{\blue{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:HumanIntelligence\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Similar questions