Math, asked by anmolkumar16, 11 months ago

find the length of common chord of the circle
x^2+y^2-2ax-4ay-4a^2=0
and
x^2+y^2-3ax+4ay=0

Answers

Answered by slicergiza
2

Answer:

8a\sqrt{\frac{14}{65}}\text{ unit}

Step-by-step explanation:

Given circles,

x^2+y^2-2ax-4ay-4a^2=0-----(1),

x^2+y^2-3ax+4ay=0-------(2)

The equation of common chord is,

Equation (1) - equation (2) = 0,

-2ax+3ax-4ay-4ay-4a^2=0

ax-8ay-4a^2=0

x-8y-4a=0------(3)

Equation (1) can be written as,

(x-a)^2+(y-2a)^2-a^2-4a^2-4a^2=0

(x-a)^2+(y-2a)^2=9a^2

So, the center of the circle (1) is (a, 2a),

Also, the radius of the circle = 3a,

Now, the length of perpendicular from (a, 2a) to the chord (3),

d=|\frac{a-8(2a)-4a}{\sqrt{1+(8)^2}}|

=\frac{19a}{\sqrt{65}}\text{ unit}

\because \sqrt{(3a)^2-(\frac{19a}{\sqrt{65}})^2}

=\sqrt{9a^2-\frac{361a^2}{65}

=\sqrt{\frac{585a^2-361a^2}{65}}

=\sqrt{\frac{224a^2}{65}}

=4a\sqrt{\frac{14}{65}}

Hence, the length of the common chord = 2\times 4a\sqrt{\frac{14}{65}}=8a\sqrt{\frac{14}{65}}\text{ unit}

Similar questions