Math, asked by sanjeevkumarpms30, 10 months ago

find the length of diagonal of rectangle whose each sides are 24 cm and 10 cm​

Answers

Answered by kka25175
1

Let ABCD be the given rectangle with AB=24cm and BC=10cm.

Since each angle of a rectangle is a right angle, angle ABC = 90°.

Join diagonal AC.

Now, we have triangle ABC, right angles at angle B.

By pythagoras theorem, AC^2=AB^2+BC^2

=>AC^2=24^2+10^2

=>AC^2=576+100

=>AC^2=676

=>AC=26

Thus, length of the diagonal = AC = 26cm

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
4

\huge\sf\pink{Answer}

☞ Length of the diagonal of the rectangle is 26 cm

\rule{110}1

\huge\sf\blue{Given}

✭ Length of the rectangle = 24 cm

✭ Breadth of the rectangle = 10 cm

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Length of Diagonal?

\rule{110}1

\huge\sf\purple{Steps}

\sf\star \: Diagram \: \star

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\sf\large{A}}\put(7.7,1){ \sf\large{B}}\put(9.5,0.7){\sf{\large{24 cm}}}\put(11.5,1){ \sf\large{C}}\put(8,1){\line(1,0){3.5}}\put(8,1){\line(0,2){2}}\put(11.5,1){\line(0,3){2}}\put(8,3){\line(3,0){3.5}}\put(11.6,2){\sf{\large{10 cm}}}\qbezier(8,1)(8,1)(11.5,3)\put(11.5,3){ \sf\large{D}}\put(11.3,1){\line(0,2){0.2}}\put(11.3,1.2){\line(2,0){0.2}}\end{picture}

The Diagonal of a rectangle is given by,

 \small\underline{ \boxed{\sf{Diagonal\:of\: rectangle=\sqrt{(length^2+breadth^2)}}}}

Substituting the given values,

➝ √(24² + 10²) cm

➝ √(576 + 100) cm

➝ √676 cm

\sf\orange{ 26 \ cm}

\rule{170}3

Similar questions