Math, asked by riYaGoYal, 1 year ago

Find The Length of Latus rectum ellipse x2/49+y2/36=1

Answers

Answered by Anonymous
8
hope this helps you........
Attachments:

Anonymous: hope u got it....
riYaGoYal: Yeah! it was a bit blurry but Thanks.
Anonymous: sorry for camera quality...but can u see the answer
riYaGoYal: Yeah Yeah I can it's 72/7 units and i got the procedure too thanks a lot..
Anonymous: yep....cool..
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\frac{72}{7}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies eqn \: of \: ellipse =  \frac{{x}^{2}}{49} + \frac{ {y}^{2}}{36}   = 1} \\  \\ \red {\underline \bold{to \: find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt{: \implies  \frac{ {x}^{2} }{49}  +  \frac{ {y}^{2} }{36}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  49} \\ \\  \tt{\circ  \:  {a}  =  7} \\ \\  \tt{\circ \:  {b}^{2}  = 36} \\ \\ \tt{\circ \:  {b}  = 6} \\\\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 36 }{7} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \frac{72  }{7} }}

Similar questions
Math, 1 year ago