Math, asked by kingramar264, 1 month ago

Find the length of latus rectum of hyperbola x^2/36 - y^2/16 =1​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

 \sf \: The \: equation \: of \: hyperbola :  \: \dfrac{ {x}^{2} }{36}  - \dfrac{ {y}^{2} }{16}  = 1

\large\underline{\sf{To\:Find - }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \:  \: \sf \: Length \:  of  \: Latus \:  Rectum

\large\underline{\sf{Solution-}}

The given equation of Hyperbola is

\rm :\longmapsto\:\dfrac{ {x}^{2} }{36}  - \dfrac{ {y}^{2} }{16}  = 1

On comparing with

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  - \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

We get

\rm :\longmapsto\: {a}^{2}  = 36\rm :\implies\:a = 6

\rm :\longmapsto\: {b}^{2}  = 16\rm :\implies\:b = 4

We know,

\rm :\longmapsto\:Length \:  of \:  Latus  \: Rectum \:  =  \: \dfrac{ {2b}^{2} }{a}

\rm :\longmapsto\:Length  \: of \:  Latus  \: Rectum = \dfrac{2 \times 16}{6}

\rm :\longmapsto\:Length  \: of \:  Latus  \: Rectum = \dfrac{16}{3}

Additional Information :-

\rm :\longmapsto\:The \:  {eq}^{n} \: of \: hyperbola \:  :   \: \dfrac{ {x}^{2} }{ {a}^{2} }  - \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

then

 \boxed{ \bf{ \: Vertex ( \pm \: a, \: 0)}}

 \boxed{ \bf{ \: eccentricity \: (e) =  \sqrt{1 + \dfrac{ {b}^{2} }{ {a}^{2} } } }}

 \boxed{ \bf{ \: Focus \: ( \pm \: ae,0)}}

 \boxed{ \bf{ \: Length \:  of \:  transverse \: axis = 2a}}

 \boxed{ \bf{ \: Length \: of \: conjugate \: axis = 2b}}

Answered by Nikitacuty
3

Answer:

The \: equation \: of \: hyperbola \: :36x2−16y2=1 \\ </p><p></p><p>\large\underline{\sf{To\:Find - }}ToFind− \\ </p><p></p><p>\: \: \: \: \: \: \: \: \: \: \bull \: \: \: \: \sf \: Length \: of \: Latus \: Rectum∙LengthofLatusRectum \\ </p><p></p><p>\large\underline{\sf{Solution-}}Solution− \\ </p><p></p><p>The \:  given  \: equation  \: of  \: Hyperbola \:  is \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} }{36} - \dfrac{ {y}^{2} }{16} = 1:⟼36x2−16y2=1 \\ </p><p></p><p>On  \: comparing  \: with \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} } - \dfrac{ {y}^{2} }{ {b}^{2} } = 1:⟼a2x2−b2y2=1 \\ </p><p></p><p>We  \: get \\ </p><p></p><p>\rm :\longmapsto\: {a}^{2} = 36\rm :\implies\:a = 6:⟼a2=36:⟹a=6 \\ </p><p></p><p>\rm :\longmapsto\: {b}^{2} = 16\rm :\implies\:b = 4:⟼b2=16:⟹b=4 \\ </p><p></p><p>We know, \\ </p><p></p><p>\rm :\longmapsto\:Length \: of \: Latus \: Rectum \: = \: \dfrac{ {2b}^{2} }{a}:⟼LengthofLatusRectum=a2b2 \\ </p><p></p><p>\rm :\longmapsto\:Length \: of \: Latus \: Rectum = \dfrac{2 \times 16}{6}:⟼LengthofLatusRectum=62×16 \\ </p><p></p><p>\rm :\longmapsto\:Length \: of \: Latus \: Rectum = \dfrac{16}{3}:⟼LengthofLatusRectum=316 \\ </p><p></p><p>Additional  \: Information :- \\ </p><p></p><p>\rm :\longmapsto\:The \: {eq}^{n} \: of \: hyperbola \: : \: \dfrac{ {x}^{2} }{ {a}^{2} } - \dfrac{ {y}^{2} }{ {b}^{2} } = 1:⟼Theeqnofhyperbola:a2x2−b2y2=1 \\ </p><p></p><p>then \\ </p><p></p><p>\boxed{ \bf{ \: Vertex ( \pm \: a, \: 0)}}Vertex(±a,0) \\ </p><p></p><p>\boxed{ \bf{ \: eccentricity \: (e) = \sqrt{1 + \dfrac{ {b}^{2} }{ {a}^{2} } } }}eccentricity(e)=1+a2b2 \\ </p><p></p><p>\boxed{ \bf{ \: Focus \: ( \pm \: ae,0)}}Focus(±ae,0) \\ </p><p></p><p>\boxed{ \bf{ \: Length \: of \: transverse \: axis = 2a}}Lengthoftransverseaxis=2a \\ </p><p></p><p>\boxed{ \bf{ \: Length \: of \: conjugate \: axis = 2b}}Lengthofconjugateaxis=2b \\  \\ </p><p></p><p>

Similar questions