Math, asked by deepesh656978, 3 months ago

Find the length of latus rectum of the equation x²/9 + ²/36 = 1 ​

Answers

Answered by mathdude500
2

Answer:

 \boxed {\boxed{ \purple{ \tt \: Length \:  of  \: Latus  \: Rectum \:  = 3  \: units}}}

Step-by-step explanation:

\tt \longrightarrow \: equation \: of \: ellipse \: is \: \dfrac{ {x}^{2} }{9}  + \dfrac{ {y}^{2} }{36}  = 1

☆ On comparing the above equation with

\tt \longrightarrow \: \dfrac{ {x}^{2} }{ {b}^{2} }  + \dfrac{ {y}^{2} }{ {a}^{2} }  = 1 \: we \: get

 \tt \longrightarrow \:  \red{ \bf \:  {b}^{2}  = 9 \: \tt\implies \:b = 3} \\  \tt \longrightarrow \:  \red{ \bf \:  {a}^{2}  = 36 \: \tt\implies \:a = 6}

\tt\implies \:length \: of \: latus \: rectum \:   = \dfrac{ {2b}^{2} }{a}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \tt \: \dfrac{2 \times 9}{6}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \tt \:  =  \: 3 \: units

Similar questions