Math, asked by ammarkheroda21, 5 months ago

Find the length of side a in the following right-
angled triangles.

Attachments:

Answers

Answered by ShírIey
15

☯ We need to find side a in both right - angled triangles A and B.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{By\:Using\:Pythagoras\:Theorem\::}}\\ \\

\star\;{\boxed{\sf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\\ \\

In First triangle A)

⠀⠀⠀

\frak{Here} \begin{cases} & \sf{Base = \frak{6\:cm}}  \\ & \sf{Perpendicular = \frak{8\:cm}} \\ & \sf{Hypotenuse = \frak{a}} \end{cases}\\ \\

\because We know that, The the side opposite the right angle is Hypotenuse.

⠀⠀⠀

\bf{\dag}\;{\underline{\frak{Putting\:given\:\:values\:,}}}\\ \\

:\implies\sf a^2 = 6^2 + 8^2\\ \\ \\ :\implies\sf a^2 = 36 + 64\\ \\ \\ :\implies\sf a^2 = 100\\ \\ \\

:\implies\sf \sqrt{a^2} = \sqrt{100}\qquad\qquad\bigg[\:Taking\:Sqrt.\:Both\;sides\:\bigg]\\ \\ \\

:\implies{\underline{\boxed{\frak{\purple{a = 10}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:the\:length\:of\;side\:a\:{\textsf{\textbf{10\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

• In First triangle B)

⠀⠀⠀

\frak{Here} \begin{cases} & \sf{Base = \frak{5\:cm}}  \\ & \sf{Perpendicular = \frak{12\:cm}} \\ & \sf{Hypotenuse = \frak{a}} \end{cases}\\ \\

\bf{\dag}\;{\underline{\frak{Putting\:given\:values\:,}}}\\ \\

:\implies\sf a^2 = 5^2 + 12^2\\ \\ \\ :\implies\sf a^2 = 25 + 144\\ \\ \\ :\implies\sf a^2 = 169\\ \\ \\

:\implies\sf \sqrt{a^2} = \sqrt{169}\qquad\qquad\bigg[\:Taking\:Sqrt.\:Both\;sides\:\bigg]\\ \\ \\

:\implies{\underline{\boxed{\frak{\purple{a = 13}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:the\:length\:of\;side\:a\: {\textsf{\textbf{13\:cm}}}.}}}

Answered by 5812ishita
3

\huge\colorbox{Orange}{Answer}

Part(A)-

\huge\large\mathcal\red{We\:have\:to\:find\:the\:length\:of\:(a)}

Given-

\huge\large\color{purple}{Base=6cm/:Perpendicular=8cm}

Solution)-

:\:(H)²=(P)²+(B)²

:\:(H)²=(8)²+(6)²

:\:(H)²=64+36

:\:(H)²=100

:\:(H)=√100

:\:(A)=10

\huge\large\mathcal\pink{(a)=10\:cm}

___________________________________

Part(B)-

\huge\large\color{purple}\boxed{We\:have\:to\:again\:find\:the\:value\:of\:(a)}

Given:

\huge\large\mathcal\pink{Base=5cm\:Perpendicular=12cm}

Solution:

:\:(H)²=(P)²+(B)²

:\:(H)²=(12)²+(5)²

:\:(H)²=(144)+(25)

:\:(H)²=169

:\:(H)=√169

:\:(H)=13

\huge\large\mathcal\pink{(a)=13cm}

__________________________________

Hope it helps:)

Similar questions