Math, asked by sweety9784, 5 months ago

find the length of the ARC and area and perimeter (π3.14) centre angle is 45 radius is 16 cm​

Answers

Answered by varadad25
6

Answer:

The length of the arc is 12.56 cm.

The area of the sector is 100.48 cm².

The perimeter of the sector is 44.56 cm.

Step-by-step-explanation:

We have given that,

  • Central angle of an arc \displaystyle{\sf\:(\:\theta\:)\:=\:45^{\circ}}
  • Radius of circle ( r ) = 16 cm
  • \displaystyle{\sf\:\pi\:=\:3.14}

We have to find the length of the arc, area and perimeter of the sector.

Now, we know that,

\displaystyle{\pink{\sf\:Length\:of\:arc\:=\:\dfrac{\theta}{360}\:\times\:2\:\pi\:r}\sf\:\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:Length\:of\:arc\:=\:\cancel{\dfrac{45}{360}}\:\times\:2\:\times\:3.14\:\times\:16}

\displaystyle{\implies\sf\:Length\:of\:arc\:=\:\dfrac{5}{\cancel{4}0}\:\times\:\cancel{2}\:\times\:3.14\:\times\:16}

\displaystyle{\implies\sf\:Length\:of\:arc\:=\:\dfrac{5}{\cancel{20}}\:\times\:3.14\:\times\:\cancel{16}}

\displaystyle{\implies\sf\:Length\:of\:arc\:=\:\cancel{\dfrac{5}{5}}\:\times\:3.14\:\times\:4}

\displaystyle{\implies\sf\:Length\:of\:arc\:=\:3.14\:\times\:4}

\displaystyle{\implies\boxed{\red{\sf\:Length\:of\:arc\:=\:12.56\:cm}}}

Now, we know that,

\displaystyle{\orange{\sf\:Area\:of\:sector\:=\:\dfrac{\theta}{360}\:\times\:\pi\:r^2}\sf\:\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\cancel{\dfrac{45}{360}}\:\times\:3.14\:\times\:(\:16\:)^2}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{5}{\cancel{40}}\:\times\:3.14\:\times\:\cancel{16}\:\times\:16}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\cancel{\dfrac{5}{10}}\:\times\:3.14\:\times\:4\:\times\:16}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{1}{2}\:\times\:4\:\times\:3.14\:\times\:16}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\cancel{\dfrac{4}{2}}\:\times\:3.14\:\times\:16}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:2\:\times\:3.14\:\times\:16}

\displaystyle{\implies\sf\:Area\:of\:sector\:=\:6.28\:\times\:16}

\displaystyle{\implies\boxed{\blue{\sf\:Area\:of\:sector\:=\:100.48\:cm^2}}}

Now, we know that,

\displaystyle{\purple{\sf\:Perimeter\:of\:sector\:=\:2r\:+\:\dfrac{\theta}{360}\:\times\:2\:\pi\:r}\sf\:\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:Perimeter\:of\:sector\:=\:2\:\times\:16\:+\:\left(\:\dfrac{\theta}{360}\:\times\:2\:\pi\:r\:\right)}

\displaystyle{\implies\sf\:Perimeter\:of\:sector\:=\:2\:\times\:16\:+\:Length\:of\:arc}

\displaystyle{\implies\sf\:Perimeter\:of\:sector\:=\:2\:\times\:16\:+\:12.56}

\displaystyle{\implies\sf\:Perimeter\:of\:sector\:=\:32\:+\:12.56}

\displaystyle{\implies\boxed{\green{\sf\:Perimeter\:of\:sector\:=\:44.56\:cm}}}

Answered by BengaliBeauty
21

Answer:-

 \small \bf \underline{Given:}

★★ Central angle of an arc (θ) = 45°

★★ Radius of circle (r) = 16cm

★★ Value of π = 3.14

 \small \bf \underline{To  \: find:}

We need to find

  • Length of the arc
  • Area and perimeter of the sector

 \small \bf \underline{Solution:}

 \bf» \: length \: of \: the \: arc =  \frac{θ}{360}  \times 2\pi {r}

 \bf =  \frac{45}{360}  \times 2 \times 3.14 \times 16

 \bf = 2 \times 2\times 3.14

 \bf = 12.56cm

 \bf »\: area \: of \: the \: sector =  \frac{θ}{360} \pi {r}^{2}

 \bf =  \frac{45}{360}  \times 3.14 \times ( {16})^{2}

  \bf =  \frac{1}{8}  \times 3.14 \times 16 \times 16

 =  \bf \: 3.14 \times 2 \times 16

 \bf = 100.48c {m}^{2}

» Perimeter = Length of arc + r + r

= 12.56 + 16 + 16

= 44.56cm


Anonymous: Νícҽ Ꭺղsաҽɾ :թ
BengaliBeauty: ᴛʜᴀɴᴋ ʏᴏᴜ ☻
Similar questions