Math, asked by moaren45, 9 months ago

Find the length of the arc and area of the sector of a circle of radius 7cm and sector angle 120°

Answers

Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ length \ of \ the \ arc \ and \ area \ of \ the}

\sf{sector \ are \ 14.7 \ cm \ and \ 51.45 \ cm^{2}}

\sf{respectively.}

\sf\orange{Given:}

\sf{\implies{Angle \ of \ sector(\theta)=120^\circ}}

\sf{\implies{Radius (r)=7 \ cm}}

\sf\pink{To \ find:}

\sf{Length \ of \ the \ arc \ and \ area \ of \ the \ sector.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{Length \ of \ arc(l)=\frac{\theta}{360}\times2\pi\times \ r}}

\sf{\therefore{Length \ of \ arc(l)=\frac{120}{360}\times2\times\frac{22}{7}\times7}}

\sf{\therefore{Length \ of \ arc(l)=\frac{44}{3}}}

\sf{\therefore{Length \ of \ arc(l)=14.7 \ cm \ (approx)}}

\boxed{\sf{Area \ of \ sector=\frac{Length \ of \ arc\times \ Radius}{2}}}

\sf{\therefore{Area \ of \ sector=\frac{14.7\times7}{2}}}

\sf{\therefore{Area \ of \ sector=14.7\times3.5}}

\sf{\therefore{Area \ of \ sector=51.45 \ cm^{2}}}

\sf\purple{\tt{\therefore{The \ length \ of \ the \ arc \ and \ area \ of \ the}}}

\sf\purple{\tt{sector \ are \ 14.7 \ cm \ and \ 51.45 \ cm^{2}}}

\sf\purple{\tt{respectively.}}

Answered by TheSentinel
81

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{Find \: the \: length \: of \: the \: arc \: and \: area}

\rm{of \: the \: sector \: of \: a \: circle \: of }

\rm{radius \: 7 \: cm \: and \: sector \: angle \: 120 °}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm\red{the \: length \: of \: the \: arc \: and \: area \: of \: the }

\rm\red{sector \: are \: 14.7 \: cm \: and \: 51.45 \:  {cm}^{2} }

\rm\red{respectively}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{\implies{Angle \: of \: sector(\theta)=120^\circ}} \\ \\

\rm{\implies{Radius (r)=7 \: cm}} \\ \\

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Length \: of \: the \: arc \: and \: area \: of \: the \: sector.}

_________________________________________

\purple{\underline{\underline{\blue{\boxed{\boxed{\red{\star{\sf Solution:}}}}}}}} \\ \\

\rm{\pink{\boxed{Length \ of \ arc(l) \ = \ \frac{\theta}{360}\times2\pi\times \ r}}} \\ \\

\rm{\longrightarrow{Length \ of \ arc(l) \ = \ \frac{120}{360}\times2\times\frac{22}{7}\times7}} \\ \\

\rm{\longrightarrow{Length \ of \ arc(l) \ = \ \frac{44}{3}}} \\ \\

\rm{\longrightarrow{Length \ of \ arc(l) \ = \ 14.7 \ cm \ (approx \ value)}} \\ \\

\rm{\pink{\boxed{Area \ of \ sector \ = \ \frac{Length \ of \ arc\times \ Radius}{2}}}} \\ \\

\rm{\longrightarrow{Area \ of \ sector=\frac{14.7\times7}{2}}} \\ \\

\rm{\longrightarrow{Area \ of \ sector \ = \ 14.7\times3.5}} \\ \\

\rm{\longrightarrow{Area \ of \ sector \ = \ 51.45 \ cm^{2}}}

\rm\red{the \: length \: of \: the \: arc \: and \: area \: of \: the }

\rm\red{sector \: are \: 14.7 \: cm \: and \: 51.45 \:  {cm}^{2}}

\rm\red{respectively}

_________________________________________

\rm\orange{Hope \ it \ helps \ :))} \\ \\

Similar questions