Math, asked by shelarjaanvi, 5 months ago

Find the length of the arc in a circle with radius 4 cm and an arc subtends an

angle 90° at the centre.

Answers

Answered by Anonymous
8

GiveN :-

  • Radius of circle = 4 cm

  • Value of ∅ = 90°

To FinD :-

  • Length of the arc

SolutioN :-

Length of arc is :

:\implies \boxed{ \blue{ \bf Arc = 2\pi r \times  \frac{ \theta}{360} }} \\  \\:\implies \sf Arc = 2 \times  \frac{22}{7} \times 4 \times  \frac{90}{360} \\  \\:\implies \sf Arc = 2 \times  \frac{22}{7}  \times \cancel 4 \times  \frac{1}{ \cancel4} \\  \\:\implies \sf Arc =  \frac{44}{7} \\  \\ :\implies \boxed{ \sf Arc = 6.28 \: cm}

Answered by Anonymous
4

❥ᴀ᭄ɴsᴡᴇʀ

Area of sector OAPB =

πr^2θ/360

 = 22/7  \:  \times  \: 10 \times 10 \times 90/360

550/7

Area of major sector = area of circle - area of sector OAPB

=πr^2−550 /7

=22 /7×10×10−550 /7

=2200 /7−550 /7

=1650 /7 \: cm^2

_____________________

ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘꜱ ʏᴏᴜ! (⌐■-■)

_____________________

❥ᴛʜᴀ᭄ɴᴋs

Similar questions