Math, asked by abhimanyuesharma69, 15 days ago

: Find the length of the are of y2 = x3 from x = of y2 = x3 from x = 0 to x = 5. Given equation of the curve​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given curve is

\red{\rm :\longmapsto\: {y}^{2} =  {x}^{3}}

can be rewritten as

\rm :\longmapsto\:y =  \sqrt{ {x}^{3} }

So, curve is to be considered in first quadrant to find the length of arc from x = 0 to x = 5.

Now,

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{3} } }\dfrac{d}{dx}  {x}^{3}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{3} } } {3x}^{2}

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{3}{2}  \sqrt{x}

Now, we know Length of arc y = f(x) from x = a to x = b is given by

\red{\rm :\longmapsto\:Length \: of \: arc \:  = \displaystyle\int ^b_a \: \sqrt{1 +  {\bigg(\dfrac{dy}{dx} \bigg) }^{2} } dx}

So, on substituting the values, we get

\red{\rm :\longmapsto\:Length \: of \: arc \:  = \displaystyle\int ^5_0 \: \sqrt{1 +  {\bigg(\dfrac{9x}{4} \bigg) } } dx}

\red{\rm :\longmapsto\:Length \: of \: arc \:  = \displaystyle\int ^5_0 \: \sqrt{\dfrac{4 + 9x}{4}} dx}

\red{\rm :\longmapsto\:Length \: of \: arc \:  =  \dfrac{1}{2} \displaystyle\int ^5_0 \: \sqrt{4 + 9x} dx}

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{2}  \times \dfrac{ {\bigg(4 + 9x \bigg) }^{\dfrac{3}{2} } }{\dfrac{3}{2} \times 9 }\bigg |^5_0}

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27}  \times {\bigg(4 + 9x \bigg) }^{\dfrac{3}{2}  }\bigg |^5_0}

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27} \bigg |{\bigg(4 + 45 \bigg) }^{\dfrac{3}{2}  } - {\bigg(4 + 0 \bigg) }^{\dfrac{3}{2}  }}\bigg |

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27} \bigg |{\bigg(49 \bigg) }^{\dfrac{3}{2}  } - {\bigg(4 \bigg) }^{\dfrac{3}{2}  }}\bigg |

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27} \bigg |{\bigg( {7}^{2}  \bigg) }^{\dfrac{3}{2}  } - {\bigg( {2}^{2}  \bigg) }^{\dfrac{3}{2}  }}\bigg |

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27} \bigg |343 - 8\bigg |}

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{1}{27} \bigg |335\bigg |}

\red{\rm :\longmapsto\:Length \: of \: arc = \dfrac{335}{27} \: units}

Attachments:
Similar questions