Math, asked by nishuwu06, 1 month ago

find the length of the asteroid x2/3+y2/3=a2/3​

Answers

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

The length of the asteroid

  \displaystyle \sf{ {x}^{ \frac{2}{3}  }  +  {y}^{ \frac{2}{3} } =  {a}^{ \frac{2}{3} }  }

EVALUATION

Here the given equation of the curve is

  \displaystyle \sf{ {x}^{ \frac{2}{3}  }  +  {y}^{ \frac{2}{3} } =  {a}^{ \frac{2}{3} }  }

Above equation represents the equation of an asteroid

Let us consider the parametric form

   \displaystyle \sf{ x = a { \cos}^{3} \theta \:  \: and \:  \:   y = a { \sin}^{3} \theta }

Now

   \displaystyle \sf{  \frac{dx}{d\theta}  = - 3 a { \cos}^{2} \theta  \sin \theta }

   \displaystyle \sf{  \frac{dy}{d\theta}  = 3 a { \sin}^{2} \theta  \cos \theta }

Thus we get

\displaystyle \sf{  { \bigg( \frac{dx}{d\theta}   \bigg)}^{2} + { \bigg( \frac{dy}{d\theta}   \bigg)}^{2} }

\displaystyle \sf{   = { \bigg( - 3 a { \cos}^{2} \theta  \sin \theta   \bigg)}^{2} + { \bigg( 3 a { \sin}^{2} \theta  \cos \theta\bigg)}^{2} }

\displaystyle \sf{   = 9 {a}^{2}{ \sin}^{2} \theta { \cos}^{2} \theta { \bigg( { \cos}^{2} \theta +  { \sin}^{2} \theta  \bigg)}}

\displaystyle \sf{   = 9 {a}^{2}{ \sin}^{2} \theta { \cos}^{2} \theta }

Hence the required length

\displaystyle \sf{ = 4 \int\limits_{0}^{ \frac{\pi}{2} }  \sqrt{ { \bigg( \frac{dx}{d\theta}   \bigg)}^{2} + { \bigg( \frac{dy}{d\theta}   \bigg)}^{2} }  \, d \theta }

\displaystyle \sf{ = 4 \int\limits_{0}^{ \frac{\pi}{2} }  \sqrt{ { 9 {a}^{2}{ \sin}^{2} \theta { \cos}^{2} \theta}}  \, d \theta }

\displaystyle \sf{ = 4 \int\limits_{0}^{ \frac{\pi}{2} }  3a \sin \theta \cos \theta  \, d \theta }

\displaystyle \sf{ = 12a \int\limits_{0}^{ \frac{\pi}{2} }   \sin \theta \cos \theta  \, d \theta }

\displaystyle \sf{ = 6a \int\limits_{0}^{ \frac{\pi}{2} }   2\sin \theta \cos \theta  \, d \theta }

\displaystyle \sf{ = 6a \int\limits_{0}^{ \frac{\pi}{2} }   \sin 2\theta  \, d \theta }

\displaystyle \sf{ = 6a   \times  \frac{ -  \cos 2 \theta}{2}  \bigg|_{0}^{ \frac{\pi}{2}}   }

\displaystyle \sf{ = 3a [ -  \cos \pi +  \cos 0] }

\displaystyle \sf{ = 3a [1 + 1] }

\displaystyle \sf{ = 3a  \times 2 }

\displaystyle \sf{ = 6a }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions