Math, asked by longjamsurjarani, 10 days ago

Find the length of the curve y=x³/12+1/x, 1 less than or equal to x less than or equal to 4.

Answers

Answered by TrustedAnswerer19
7

Given,

y=x³/12+1/x

We have to find the length of the curve.

Solution :

we know that,

If we want to find the arc length(l) of the graph of y=f(x) from x=a to x=b, then it can be found by

 \sf \: L =  \displaystyle \int _a^b \rm \:  \sqrt{1 +  {( \frac{dy}{dx} })^{2} }  \:  \: dx

Now,

at first we have to find the 1st derivatives of y

 \rm \:  \frac{dy}{dx}  =  \frac{d}{dx} ( \frac{ {x}^{3} }{ 12}  +  \frac{1}{x} ) \\  \\  = 3  \times \frac{ {x}^{2} }{12}  -  \frac{1}{ {x}^{2} }  \\  \\  =  \frac{ {x}^{2} }{4}  -   \frac{1}{ {x}^{2} }

Now,

let the length of the curve be = L

 \sf \: L =  \displaystyle \int _1^4 \rm \:   \sqrt{1 +  {( \frac{dy}{dx} })^{2} }  \:  \: dx \\  \\  \rm =  \displaystyle \int _1^4 \rm \:  \sqrt{1 + ( { \frac{ {x}^{2} }{4} -  \frac{1}{ {x}^{2} }  })^{2} }  \:  \: dx \\  \\  =  \displaystyle \int _1^4 \rm \:  \sqrt{1 +  \frac{ {x}^{4} }{16} -  \frac{1}{2}  +  \frac{1}{  {x}^{4}  }  }  \:  \: dx \\  \\  \rm =  \displaystyle \int _1^4 \rm \:  \sqrt{ {( \frac{ {x}^{4} }{16}  +  \frac{1}{2} +  \frac{1}{ {x}^{4} }  })^{2} }  \:  \: dx \\  \\  \rm =  \displaystyle \int _1^4 \rm \:  \sqrt{ {( \frac{ {x}^{2} }{4}  +  \frac{1}{ {x}^{2} } })^{2} }  \:  \: dx \\  \\  \rm =  \displaystyle \int _1^4 \rm \: ( \frac{ {x}^{2} }{4}  +  \frac{1}{ {x}^{2} }  )\:  \: dx \\  \\  \rm = [ \frac{ {x}^{3} }{12} -  \frac{1}{x}  ]_1^4  \\  \\  = ( \frac{ {4}^{3} }{12}  -  \frac{1}{4} ) - ( \frac{ {1}^{3} }{12}  -  \frac{1}{1} ) \\  \\  =  \frac{64}{12}  -  \frac{1}{4}  -  \frac{1}{12}  + 1 \\  \\  = 4

So the length of the curve is = 4 unit

Similar questions