Hindi, asked by johnspartan8144, 1 year ago

Find the length of the diagonal in the following cases cuboid of 11 cm by 10 cm by 2 cm

Answers

Answered by aditya046
0

length of the diagonal = L2+b2+h2. (11) 2 + (10)2+(2)2= 121+100+4 225 square root

Answered by Agamsain
0

Answer :-

  • Diagonal of cuboid = 15 cm

Given :-

  • Length of cuboid = 11 cm
  • Width of cuboid = 10 cm
  • Height of cuboid = 2 cm

To Find :-

  • Diagonal of cuboid = ?

Explanation :-

As we know, we have formulae to find the diagonal of cuboid .

\blue { \boxed { \bf \bigstar \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2} \; \; \bigstar }}

\rm : \; \longmapsto \sqrt{(11)^2+(10)^2+(2)^2} \; \; \; cm

\rm : \; \longmapsto \sqrt{(121)+(100)+(4)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(221)+(4)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(204)} \; \; \; cm

\rm : \; \longmapsto \sqrt{225} \; \; \; cm

\green { \underline { \boxed { \bf : \; \longmapsto 15 \; \; \; cm}}}

Hence, the diagonal of the of the cuboid is 15 cm.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions