Math, asked by manish3649, 2 months ago

Find the length of the diagonal of a rectangle of the length 30 meter and width 16 meter.​

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
9

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ Given}}}}}}

  • Length of rectangle = 30 meter.

 \:

  • Width of rectangle = 16 meter.

_________________________

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ To \:  \:  Find}}}}}}

  • Diagonal of a rectangle.

_________________________

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ Formula \:  \:  Using}}}}}}

 \Large\begin{gathered} {\underline{\boxed{ \rm {\red{ \: D \:   =  \:  \sqrt{ {W }^{2} \:  +  \:  {L} ^{2}  } }}}}}\end{gathered}

  • D denotes the diagonal of rectangle.

 \:

  • W denotes width of rectangle.

 \:

  • L denotes length of rectangle.

_______________________

\Large  \pink\dag   \:  \underline {\rm {{{\color{blue}{Substuting  \:  \: the  \:  \: values...}}}}}   \: \pink\dag

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:  \sqrt{ {16 }^{2} \:  +  \:  {30} ^{2}  } }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:  \sqrt{ 256\:  +  \:  900  } }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:    \sqrt{1156}  }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:    \sqrt{2  \: \times \:  2 \:  \times  \: 17 \:  \times  \: 17}  }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:    {2  \: \times \:  17}  }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\green{ \: D \:   =  \:    34 }}}}}\end{gathered}

Length of the Diagonal of rectangle is 34 m.

 \:

More Information.

 \:

Area of rectangle = Length × Breadth

 \:

Perimeter of rectangle = 2 ( L + B ).

Answered by Anonymous
42

Answer:

\underline{\underline{\bigstar{\textbf{\textsf{\: Given\::-}}}}}

  • ➽ Lenght of Rectangle = 30 meter
  • ➽ Width of Rectangle = 16 meter

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: To Find \::-}}}}}

  • ➽ Diagonal of Rectangle

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Using Formula\::-}}}}}

\dag{\underline{\boxed{\pmb{\sf{\red{{D}  =  \sqrt{ {l}^{2} +  {w}^{2}}}}}}}}

Where

  • ➽ D = Diagonal of Rectangle
  • ➽ L = Lenght of Rectangle
  • ➽ W = Width of Rectangle

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Diagram\::-}}}}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large{30 cm}}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large{16 cm}}\put(-0.5,-0.4){\bf}\put(-0.5,3.2){\bf}\put(5.3,-0.4){\bf}\put(5.3,3.2){\bf}\end{picture}

  • View the diagram from website Brainly.in.
  • Here is the question link :
  • https://brainly.in/question/43495813

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Solution\::-}}}}}

Finding the Diagonal of Rectangle

\quad{: \implies{\sf{{D}  =  \sqrt{ {l}^{2} +  {w}^{2}}}}}

  • Substuting the values

\quad{: \implies{\sf{{D}  =  \sqrt{ {(30)}^{2} +  {( 16 )}^{2}}}}}

\quad{: \implies{\sf{{D}  =  \sqrt{ {(30 \times 30)} +  {( 16 \times 16 )}}}}}

\quad{: \implies{\sf{{D}  =  \sqrt{ {900} +  {256}}}}}

\quad{: \implies{\sf{{D}  =  \sqrt{1156}}}}

\quad{: \implies{\sf{{D}  =  \sqrt{34 \times 34}}}}

\quad{: \implies{\sf{{D}  = {34 \: m}}}}

\dag{\underline{\boxed{\pmb{\sf{\red{Diagonal  \: of \:  Rectangle = 34  \: m}}}}}}

The Diagonal of Rectangle is 34 m.

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Learn More \::-}}}}}

\small\boxed{\begin{minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star\sf Scalene\triangle=\sqrt{s (s-a)(s-b)(s-c)}\\ \\ \star\sf Rhombus =\dfrac{1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac{1}{2}p\sqrt{4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac{1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac{\sqrt{3}}{4}(side)^2\end{minipage}}

Attachments:
Similar questions