Math, asked by Nildip, 6 months ago

Find the length of the diagonal of a rectangle whose area is 60 cm² and width 5cm.​

Answers

Answered by ImperialGladiator
163

{\blue{\underline{\underline{\purple{\textsf{\textbf{Answer : }}}}}}}

◩ Diagonal = 13cm.

◩ Length = 12cm.

{\blue{\underline{\underline{\purple{\textsf{\textbf{Explanation : }}}}}}}

Given that, A rectangle of area 60cm² and width 5cm.

To find :

  • Diagonal of the rectangle.
  • And it's length.

As we know that,

➡ Area of a rectangle = l × b

Here,

l (length) = x (assuming)

b (breadth) = 5cm.

Area = 60cm²

Procedure :

\sf \longrightarrow \:  {60cm}^{2}  = l \times 5 \\

\sf \longrightarrow \: 60 = 5l \\

\sf \longrightarrow \: l =  \frac{60}{5}  \\

\sf \longrightarrow \: l = 12cm

Therefore :

➡ l (length) = 12cm.

Now,

  • Using the Pythagorean theorem where taking hypotenuse as the diagonal length is perpendicular and breadth is the base.

Pythagoras theorem :

 \pink{ \sf \longrightarrow \:  {h}^{2}   =  {{p}^{2} +   {b}^{2} }}

Where,

➡ p (perpendicular) = 12 cm.

➡ b (base) = 5cm.

➡ h (hypotenuse) = ? cm.

Procedure :

 \sf \longrightarrow \:  {h}^{2}  =  { {12}^{2} +  {5}^{2}  }  \\

\sf \longrightarrow \:  {h}^{2}  =  {144 + 25} \\

\sf \longrightarrow \:  {h}^{2}   =  {169}  \\

\sf \longrightarrow \: h =  \sqrt{169}  \\

\sf \longrightarrow \: h = 13cm.

{\blue{\underline{\underline{\purple{\textsf{\textbf{Hence, the diagonal is 13cm and length is 12cm }}}}}}}

Answered by Anonymous
13

Answer:

 \large \bold {\underline{ \underline{question}}}

Find the length of the diagonal of a rectangle whose area is 60 cm² and width 5cm.

 \large \bold {\underline{ \underline \purple{gívєn}}}

  • αrєα σf thє rєctαnglє = 60 cm²
  • wídth = 5 cm

 \large \bold { \underline {\underline \pink{sσlutíσn}}}

αrєα σf rєctαnglє = 60 cm²

 \boxed{  \bold\green{αrєα \:  σf  \: rєctαnglє =l \times b} }

whєrє

l= lєnght

b= вrєαth

suвsítutє thє vαluєs ín thє αвσvє fσrmula

60 = l × 5

l= 60/5

l= 12 cm

______________________

 \large \bold {\underline{ \underline \purple{pчthαgσrαs  \: \:  thєσrєm}}}

In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides“

Nσw αssumє ADC

AD²+ DC²= AC²

✏️5²+ 12²= x²

✏️25+144= x²

✏️169= x²

✏️x= √169

✏️x= 13cm

----------------------------------------------

Attachments:
Similar questions