Math, asked by roshnikumari363636, 3 months ago

Find the length of the diagonal of the rectangle whose sides are 24 m and 10 m​

Answers

Answered by irfanhabibraja
0

as we know that the diagonal of a rectangle is equal the the root of sum of squares of sides

Attachments:
Answered by BrainlyRish
2

❍ Let's Consider Length and Breadth of Rectangle be 24 m and 10 m .

\dag\frak{\underline { As,\:We\:know\:that\::}}\\\\

\star\boxed {\pink{\sf{ Diagonal _{(Rectangle)} = \sqrt {l^{2} + b^{2} }}}\\\\

Where,

  • l is the Length of Rectangle and b is the Breadth of Rectangle.

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{Diagonal _{(Rectangle)} = \sqrt {24^{2} + 10^{2} } }\\\\:\implies \sf{Diagonal _{(Rectangle)} = \sqrt {576 + 100 } }\\\\:\implies \sf{Diagonal _{(Rectangle)} = \sqrt {676 } }\\\\\underline {\boxed{\pink{ \mathrm {  Diagonal _{(Rectangle)} = 26\: m}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {Hence,\:  Diagonal \:of\:Rectangle \:is\:\bf{26\: m}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions