Math, asked by vumath9ach1it, 1 year ago

find the length of the longest iron rod that can be placed in a room 30 m long 24 m broad and 12 root 2 high

Answers

Answered by MADHANSCTS
25

dimensions of room length 30 m , breadth 24 m and height 12
 \sqrt{2} m height .
The diagonal of the base =   \sqrt{30 ^{2}+24^{2} }
                                            = 38.418 m
Longest diagonal =  \sqrt{38.418 ^{2}+(12\sqrt{2})^{2} }
                              = 42 m
Therefore the longest iron rod that can be placed = 42 m


QGP: Hope you understand it
Anonymous: understood
QGP: Then correct your answe
QGP: answer*
QGP: I do not have a chance now.
QGP: You people please correct your answer
QGP: Still it is incorrect
QGP: Hello MADHANSCTS Did you understand the trick?
MADHANSCTS: thanq
QGP: Welcome
Answered by Anonymous
6
given,
dimensions are length =30m
                         breadth = 24 m
                         height  = 12√2 m
in the diagram green line = 38.4 m
                                            ( by pythagoras theorem , green line = √(24² + 30²)
                                                                                                       =√(576 + 900)
                                                                                                      = √1476
                                                                                                      = 38.4 m )
now, red line = (12√2)² + (38.4)²
                     =√( 288 + 1474.56)
                     = √1762.56
                    = 41.98 m
therefore, the length of longest iron rod that can be placed in the room = 42 m (nearly 41.98 m) 



Attachments:

QGP: Please correct the answer.
Anonymous: purva............now ok?
Anonymous: brainliest pleaseeeeeeeeee,,,,,,,,,,,,,,,,,,,,needed
QGP: There's one small mistake. We took root of 1476 as 38.4 m. Then while squaring 38.4m, you can directly take 1476 instead of 1474.56.
QGP: So the final answer will be exactly 42m and not approx 42 m
Similar questions