Math, asked by Awantika7735, 9 months ago

Find the length of the median of triangle abc whose vertices are a(0,-1) b (2,1) and c(0,3)

Answers

Answered by MaheswariS
30

\textbf{Given:}

\text{In $\triangle$ABC, A(0,-1), B(2,1) and C(0,3)}

\textbf{To find:}

\text{Lengths of the medians of $\triangle$ABC}

\textbf{Solution:}

\text{Let D, E and F be the midpoints of sides BC, AC and AB}

\text{By Using Midpoint formula,}

\text{Midpoint of BC}

=(\dfrac{2+0}{2},\dfrac{1+3}{2})

=\bf\,D(1,2)

\text{Midpoint of AC}

=(\dfrac{0+0}{2},\dfrac{-1+3}{2})

=\bf\,E(0,1)

\text{Midpoint of AB}

=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})

=(\dfrac{0+2}{2},\dfrac{-1+1}{2})

=\bf\,F(1,0)

\textbf{Length of the median AD}

=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

=\sqrt{(0-1)^2+(-1-2)^2}

=\sqrt{1+9}

=\sqrt{10}

\textbf{Length of the median BE}

=\sqrt{(2-0)^2+(1-1)^2}

=\sqrt{4+0}

=\sqrt{4}

=2

\textbf{Length of the median CF}

=\sqrt{(0-1)^2+(3-0)^2}

=\sqrt{1+9}

=\sqrt{10}

\therefore\textbf{The length of the medians AD, BE and CF are $\bf\sqrt{10}$, 2 and $\bf\sqrt{10}$}

Find more:

In triangle ABC angle BAC is 90 degree seg BL and seg CM are medians of triangle ABC. Then prove that 4( BL²+CM²)= 5 BC²

https://brainly.in/question/8096479

Attachments:
Answered by nikhilcharode0009
6

Step-by-step explanation:

Given:

\text{In $\triangle$ABC, A(0,-1), B(2,1) and C(0,3)}In △ABC, A(0,-1), B(2,1) and C(0,3)

\textbf{To find:}To find:

\text{Lengths of the medians of $\triangle$ABC}Lengths of the medians of △ABC

\textbf{Solution:}Solution:

\text{Let D, E and F be the midpoints of sides BC, AC and AB}Let D, E and F be the midpoints of sides BC, AC and AB

\text{By Using Midpoint formula,}By Using Midpoint formula,

\text{Midpoint of BC}Midpoint of BC

=(\dfrac{2+0}{2},\dfrac{1+3}{2})=(

2

2+0

,

2

1+3

)

=\bf\,D(1,2)=D(1,2)

\text{Midpoint of AC}Midpoint of AC

=(\dfrac{0+0}{2},\dfrac{-1+3}{2})=(

2

0+0

,

2

−1+3

)

=\bf\,E(0,1)=E(0,1)

\text{Midpoint of AB}Midpoint of AB

=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})=(

2

x

1

+x

2

,

2

y

1

+y

2

)

=(\dfrac{0+2}{2},\dfrac{-1+1}{2})=(

2

0+2

,

2

−1+1

)

=\bf\,F(1,0)=F(1,0)

\textbf{Length of the median AD}Length of the median AD

=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

=\sqrt{(0-1)^2+(-1-2)^2}=

(0−1)

2

+(−1−2)

2

=\sqrt{1+9}=

1+9

=\sqrt{10}=

10

\textbf{Length of the median BE}Length of the median BE

=\sqrt{(2-0)^2+(1-1)^2}=

(2−0)

2

+(1−1)

2

=\sqrt{4+0}=

4+0

=\sqrt{4}=

4

=2=2

\textbf{Length of the median CF}Length of the median CF

=\sqrt{(0-1)^2+(3-0)^2}=

(0−1)

2

+(3−0)

2

=\sqrt{1+9}=

1+9

=\sqrt{10}=

10

\therefore\textbf{The length of the medians AD, BE and CF are $\bf\sqrt{10}$, 2 and $\bf\sqrt{10}$}∴The length of the medians AD, BE and CF are

10

, 2 and

10

Find more:

In triangle ABC angle BAC is 90 degree seg BL and seg CM are medians of triangle ABC. Then prove that 4( BL²+CM²)= 5 BC²

Similar questions