Math, asked by sudhirrawat02, 1 month ago

find the length of the side of a square whose area is 44 m square​

Answers

Answered by swatipatil0
0

Answer:

1936.

Step-by-step explanation:

THIS IS THE ANSWER

Answered by INSIDI0US
5

Step-by-step explanation:

Question :-

  • Find the side of square whose area is 44 m².

To Find :-

  • Side of square.

Solution :-

Given :

  • Area = 44 m²

By using the formula,

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

Where,

  • a = length of the side

According to the question, by using the formula, we get :

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

{\sf{\longrightarrow 44\ =\ a^2}}

{\sf{\longrightarrow \sqrt{44}\ =\ a}}

{\sf{\longrightarrow 2 \sqrt{11}\ =\ a}}

{\sf{\longrightarrow a\ =\ 2 \sqrt{11}\ m}}

\therefore Hence, side of square is 2√11 m.

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions