Find the length of the tangent
point 13 cm away from the centre of
the circle of radius 5 cm
Answers
ᴡᴇ ʜᴀᴠᴇ ᴛᴏ ғɪɴᴅ ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴀ ᴘᴏɪɴᴛ 13ᴄᴍ ᴀᴡᴀʏ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏғ ʀᴀᴅɪᴜs 12ᴄᴍ.
ʟᴇᴛ ᴛᴀɴɢᴇɴᴛ ɪs ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴡʜɪᴄʜ ᴛᴏᴜᴄʜᴇs ᴛʜᴇ ᴄɪʀᴄʟᴇ ᴀᴛ ᴛ. ᴇ.ɢ., ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ɪs ᴘᴛ ᴀɴᴅ ᴄᴇɴᴛʀᴇ ᴏғ ᴄɪʀᴄʟᴇ ɪs ᴏ.
ɢɪᴠᴇɴ, ᴘᴏ = 13ᴄᴍ , ᴏᴛ = ʀᴀᴅɪᴜs = 12ᴄᴍ
ᴡᴇ ᴋɴᴏᴡ, ᴛᴀɴɢᴇɴᴛ ɪs ᴘᴇʀᴘᴇɴᴅɪᴄᴜʟᴀʀ ᴜᴘᴏɴ ʀᴀᴅɪᴜs ᴏғ ᴄɪʀᴄʟᴇ sᴏ, ∆ᴘᴏᴛ ɪs ʀɪɢʜᴛ ᴀɴɢʟᴇᴅ ᴛʀɪᴀɴɢʟᴇ.
sᴏ, ᴘᴛ² + ᴏᴛ² = ᴏᴘ²
ᴘᴛ² + 12² = 13²
ᴘᴛ² = 169 - 144 = 25
ᴘᴛ = 5ᴄᴍ
ʜᴇɴᴄᴇ, ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ = 5ᴄᴍ
Step-by-step explanation:
we have to find the length of tangent drawn from a point 13cm away from the centre of a circle of radius 12cm.
Let tangent is drawn from P which touches the circle at T. e.g., length of tangent is PT and centre of circle is O.
Given, PO = 13cm , OT = radius = 12cm
we know, tangent is perpendicular upon radius of circle so, ∆POT is right angled triangle.
so, PT² + OT² = OP²
PT² + 12² = 13²
PT² = 169 - 144 = 25
PT = 5cm
hence, length of tangent = 5cm