Math, asked by Avalanche9, 4 months ago

Find the length of three sides of triangle ABC , If the co-ordinates of vertices are:
A( 2 , -5 ) B (-3 , 1) and C( 7 , -3)​
Plz don't write rubbish, guys!​

Answers

Answered by Anonymous
45

GiveN :-

  • Coordinates of A = ( 2 , - 5 )
  • Coordinates of B = ( - 3 , 1 )
  • Coordinates of C = ( 7 , - 3 )

To FinD :-

  • Length of sides of the triangle

SolutioN :-

By using distance formula

 \bullet \:\:\:\boxed{\bf\orange{ Distance =  \sqrt{ {(x_2 - x_1)}^{2}  +  {(y_2 - y_1)}^{2}}} }

Distance of AB

 \mapsto \sf AB =  \sqrt{ {( - 3 - 2)}^{2} + {(1  + 5)}^{2}} \\  \\\mapsto \sf AB =  \sqrt{ {( -5)}^{2} + {(6)}^{2}} \\  \\\mapsto \sf AB =  \sqrt{25 + 36} \\  \\ \mapsto \boxed{ \sf AB = \sqrt{61}  \: unit}

Distance of BC

\mapsto \sf BC =  \sqrt{ {( 7 + 3)}^{2} + {( - 3 - 1)}^{2}} \\  \\\mapsto \sf BC =  \sqrt{ {( 10)}^{2} + {( - 4)}^{2}} \\  \\\mapsto \sf BC =  \sqrt{100 + 16} \\  \\ \mapsto \boxed{\sf BC = \sqrt{116}  \: unit}

Distance of AC

\mapsto \sf AC =  \sqrt{ {( 7 - 2)}^{2}+{( - 3+ 5)}^{2}} \\  \\\mapsto \sf AC =  \sqrt{ {(5)}^{2} + {(2)}^{2}} \\  \\\mapsto \sf AC =  \sqrt{25 +4} \\  \\\mapsto \boxed{\sf AC = \sqrt{29}  \: unit}

Similar questions