Math, asked by niranjan136798, 5 months ago


Find the length the wooden strip required to frame a photograph whose length and breadth are
6.2 m and 5.9 cm respectively.

Answers

Answered by Anonymous
37

Correct Question:-

  • Find the length the wooden strip required to frame a photograph whose length and breadth are 6.2 m and 5.9 m respectively.

Given:-

  • Length of the photograph is 6.2 m.
  • Breadth of the photograph is 5.9 m.

To find:-

  • The length of the wooden strip.

Solution:-

Here,

  • Length = 6.2 m
  • Breadth = 5.9 m

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Perimeter\: of\: rectangle = 2(length + breadth}}}}}

\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {2(l + b)}

\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {2(6.2 + 5.9)}

\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \: {2(12.1)}

\sf\longrightarrow\: \: \: \: \: \: \: \: {\boxed{\red{24.2\: m}}}

Hence,

  • the length of the wooden strip is 24.2 m.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Answered by Anonymous
65

Question:

Find the length the wooden strip required to frame a photograph whose length and breadth are 6.2 m and 5.9 m respectively.

Given :

  • Length = 6.2 m
  • Breadth = 5.9 m

To find :

  • The length of wooden strip required to frame a photograph

Solution :

To find the length of wooden strip required, we need to find the perimeter of the photograph whose dimensions are 6.2 m and 5.9 respectively.

Perimeter of the rectangle = 2( l + b)

: 2 ( 6.2 + 5.9 )

: 2 (12.1)

: 24.2

Hence, the length of wooden strip required = 24.2 cm

Similar questions