find the lim 1-cosx/x²
Answers
Answered by
40
Correct QuestioN :
Find the value of
AnsweR :
1 / 2.
SolutioN :
Here, By Trigonometry Formula.
According to question,
Let try to convert ( Cos 2θ ) in terms of 1 - cos θ.
We can also write as,
________________________________
Now, putting the value of 1 - Cos x.
Now, We know that,
Therefore, the required value of given lim is 1 / 2.
Asterinn:
Perfect!
Answered by
453
✭ Appropriate Question ✭
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ find the lim 1-cosx/x² ?
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
✪ Solution ✪
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ lim_(x->0) (1 - cos(x))/x^2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Hint:-
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ Indeterminate form of type 0/0. Apply l'Hôpital's rule.
⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
☯ Applying l'Hôpital's rule, we get that
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ lim_(x->0) (1 - cos(x))/x^2 = lim_(x->0) d/( dx)(1 - cos(x))/( d/( dx) x^2) = lim_(x->0) sin(x)/(2 x) invisible comma
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ lim_(x->0) sin(x)/(2 x)
⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Hint:-
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- • ➠ Factor a constant multiple out of the limit.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- • ➠ lim_(x->0) sin(x)/(2 x) = 1/2 (lim_(x->0) sin(x)/x):
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ 1/2 lim_(x->0) sin(x)/x
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Hint:-
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- Indeterminate form of type 0/0. Apply l'Hôpital's rule.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ lim_(x->0) sin(x)/x | = | lim_(x->0) ( d/( dx) sin(x))/(( dx)/( dx))
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ | = | lim_(x->0) cos(x)/1
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➠ | = | lim_(x->0) cos(x) invisible comma
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ 1/2lim_(x->0) cos(x)
⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Hint:-
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- | The limit of a continuous function at a point is just its value there.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- lim_(x->0) cos(x) = cos(0) = 1:
Answer: 1/2
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Similar questions