Math, asked by deepakenterprises918, 5 months ago

find the lim 1-cosx/x²

Answers

Answered by amitkumar44481
40

Correct QuestioN :

Find the value of  \displaystyle \tt\lim_{x \to 0} \frac{1 - cos\,x}{x^2}

AnsweR :

1 / 2.

SolutioN :

:\implies \displaystyle \tt\lim_{x \to 0} \frac{1 - cos\,x}{x^2}

Here, By Trigonometry Formula.

\tt \bullet  \:  \:  \:  \:  \: Cos\,2\theta = 1 - 2Sin^2\,\theta

\tt \bullet  \:  \:  \:  \:  \: Cos\,2\theta = 2 Cos^2\,\theta-1

\tt \bullet  \:  \:  \:  \:  \: Cos\,2\theta =  \frac{ 1-tan^2\,\theta }{1+tan^2\,\theta} \\

According to question,

Let try to convert ( Cos 2θ ) in terms of 1 - cos θ.

\tt \implies Cos\,2\theta = 1 - 2Sin^2\,\theta

We can also write as,

\tt \implies Cos\,\theta = 1 - 2Sin^2\, \frac{\theta}{2} \\

\tt \implies 1 - Cos\,\theta = 2Sin^2\, \frac{\theta}{2} \\

________________________________

Now, putting the value of 1 - Cos x.

:\implies \displaystyle \tt\lim_{x \to 0} \frac{2Sin^2\, \frac{x}{2}}{x^2}

:\implies \displaystyle \tt\lim_{x \to 0} \frac{2Sin^2\, \frac{x}{2}}{4 (\frac{x}{2}) ^2}

Now, We know that,

\dagger  \:  \:  \:  \:  \:  \: \displaystyle \tt\lim_{x \to 0} \frac{Sin\,x}{x} = 1.

:\implies \displaystyle \tt\lim_{x \to 0} \frac{2 \bigg(Sin\, \frac{x}{2} \bigg)^2}{4 (\frac{x}{2}) ^2}

:\implies \displaystyle \tt\lim_{x \to 0} \frac{2  \cancel{\bigg(Sin\, \frac{x}{2} \bigg)^2}}{4  \cancel{(\frac{x}{2}) ^2}}

:\implies \displaystyle \tt\lim_{x \to 0} \frac{2 }{4}

:\implies \displaystyle \tt\lim_{x \to 0} \frac{1 }{2}

Therefore, the required value of given lim is 1 / 2.


Asterinn: Perfect!
Answered by BrainlyEmpire
453

✭ Appropriate Question ✭

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ find the lim 1-cosx/x² ?

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

✪ Solution ✪

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ lim_(x->0) (1 - cos(x))/x^2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \orange{\bigstar} .}} Hint:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ Indeterminate form of type 0/0. Apply l'Hôpital's rule.

⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

☯ Applying l'Hôpital's rule, we get that

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ lim_(x->0) (1 - cos(x))/x^2 = lim_(x->0) d/( dx)(1 - cos(x))/( d/( dx) x^2) = lim_(x->0) sin(x)/(2 x) invisible comma

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ lim_(x->0) sin(x)/(2 x)

⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \red{\bigstar} .}} Hint:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • • ➠ Factor a constant multiple out of the limit.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • • ➠ lim_(x->0) sin(x)/(2 x) = 1/2 (lim_(x->0) sin(x)/x):

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ 1/2 lim_(x->0) sin(x)/x

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \green{\bigstar} .}} Hint:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Indeterminate form of type 0/0. Apply l'Hôpital's rule.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ lim_(x->0) sin(x)/x | = | lim_(x->0) ( d/( dx) sin(x))/(( dx)/( dx))

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ | = | lim_(x->0) cos(x)/1

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➠ | = | lim_(x->0) cos(x) invisible comma

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ 1/2lim_(x->0) cos(x)

⠀▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \pink{\bigstar} .}} Hint:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • | The limit of a continuous function at a point is just its value there.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • lim_(x->0) cos(x) = cos(0) = 1:

\large\underline{\red{\sf \orange{\bigstar} .}} Answer: 1/2 \large\underline{\red{\sf \orange{\bigstar} .}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions