Math, asked by lokeshseetharam53, 10 hours ago

find the limit by applying l hospital rule.​I want full solution

Attachments:

Answers

Answered by mathdude500
18

Given Question

Find limit by applying L - Hospital Rule

\rm :\longmapsto\:\displaystyle\lim _{x \to 0}\rm \dfrac{x(1 -  \sqrt{1 -  {x}^{2}})}{ \sqrt{1 -  {x}^{2}}   \: ({sin}^{ - 1} ( {x}^{3}) )}

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim _{x \to 0}\rm \dfrac{x(1 -  \sqrt{1 -  {x}^{2}})}{ \sqrt{1 -  {x}^{2}}   \: ({sin}^{ - 1} ( {x}^{3}) )}

can be rewritten as

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{1}{ \sqrt{1 -  {x}^{2} } } \times \displaystyle\lim _{x \to 0}\rm  \frac{x(1 -  \sqrt{1 -  {x}^{2}})}{ {sin}^{ - 1} {x}^{3} }

\rm \:  =  \: 1 \times \displaystyle\lim _{x \to 0}\rm  \frac{x(1 -  \sqrt{1 -  {x}^{2}})}{ \dfrac{ {sin}^{ - 1} {x}^{3}}{ {x}^{3} }  \times  {x}^{3} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim _{x \to 0}\rm  \frac{ {sin}^{ - 1}x}{x} = 1}}}

So, using this result, we get

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{x(1 -  \sqrt{1 -  {x}^{2}})}{ {x}^{3} }

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{1 -  \sqrt{1 -  {x}^{2}}}{ {x}^{2} }

Now, on applying L - Hospital Rule, we get

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{\dfrac{d}{dx}(1 -  \sqrt{1 -  {x}^{2}})}{\dfrac{d}{dx} {x}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}  \sqrt{x}  \:  =  \:   \frac{1}{2 \sqrt{x} }  \: }}}

So, using this result, we get

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{0 -  \dfrac{1}{2 \sqrt{1 -  {x}^{2} }}\dfrac{d}{dx}(1 -  {x}^{2}) }{2x}

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{ -  \dfrac{1}{2 \sqrt{1 -  {x}^{2} }}(0 - 2x) }{2x}

\rm \:  =  \: \displaystyle\lim _{x \to 0}\rm  \frac{1}{2 \sqrt{1 -  {x}^{2} } }

\rm \:  =  \: \dfrac{1}{2}

Hence,

\red{\rm\implies \:\:\boxed{\tt{ \displaystyle\lim _{x \to 0}\rm \dfrac{x(1 -  \sqrt{1 -  {x}^{2}})}{ \sqrt{1 -  {x}^{2}}   \: ({sin}^{ - 1} ( {x}^{3}) )}  =  \frac{1}{2}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by talpadadilip417
2

Answer:

\boxed{{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks

Attachments:
Similar questions