Math, asked by anand388, 3 months ago

find the limit from attached file

Attachments:

Answers

Answered by amansharma264
6

EXPLANATION.

\sf \implies  \lim_{x \to 0} \dfrac{sin(2 + x) - sin(2 - x)}{x}

As we knw that,

First we put the value of x = 0 in equation, and check their indeterminant form, we get.

\sf \implies  \lim_{x \to 0} \dfrac{sin(2 + 0) - sin(2 - 0)}{0}

\sf \implies  \lim_{x \to 0} \dfrac{sin(2) - sin(2)}{0}

\sf \implies  \lim_{x \to 0} \dfrac{0}{0}

As we can see that,

It is the form of 0/0 indeterminant form,

We can simply apply L HOSPITAL'S RULE.

\sf \implies  \lim_{x \to 0} \dfrac{sin(2 + x) - sin(2 - x)}{x}

Differentiate w.r.t x, we get.

⇒ sin(2 + x).

⇒ d(sin(2 + x)/dx

⇒ cos(2 + x).1.

⇒ cos(2 + x).

Differentiate w.r.t x, we get.

⇒ sin(2 - x).

⇒ d(sin(2 - x))/dx.

⇒ cos(2 - x)(-1).

⇒ -cos(2 - x).

We can write equation as,

\sf \implies  \lim_{x \to 0} \dfrac{\dfrac{d(sin(2 + x))}{dx}\ \ -  \dfrac{d(sin(2 - x))}{dx} }{\dfrac{d(x)}{dx} }

\sf \implies  \lim_{x \to 0} \dfrac{cos(2 + x) - (-cos(2 - x))}{1}

\sf \implies  \lim_{x \to 0} = {cos(2 + x) + cos(2 - x)}

Put the value of x = 0 in equation, we get.

\sf \implies  \lim_{x \to 0} = cos(2 + 0) + cos(2 - 0)

\sf \implies  \lim_{x \to 0} = cos(2) + cos(2)

\sf \implies  \lim_{x \to 0} = 2cos(2)

                                                                                                                 

MORE INFORMATION.

NOTE:

If function takes any of the following form 0/0 , ∞/∞ then L'HOSPITAL'S RULE applied.

\sf \implies  \lim_{x \to a} \dfrac{f(x)}{g(x)}  = \lim_{x \to a} \dfrac{f'(x)}{g'(x)}

Note :

L'HOSPITAL'S RULE can be repeated required number of times in same questions.

Answered by mathdude500
0

FORMULA USED :-

 \longmapsto \boxed{ \green{ \bf \: \sf  \lim_{x \to 0} \dfrac{sinx}{x} = 1}}

 \longmapsto \boxed{ \green{ \bf \: sin(x + y) - sin(x - y) = 2 \: cosx \: siny}}

CALCULATION :- .

\tt \implies \lim_{x \to 0} \dfrac{sin(2 + x) - sin(2 - x)}{x}

If we substitute the value of x = 0, we get indeterminant form.

So,

\tt \implies \lim_{x \to 0} \dfrac{sin(2 + x) - sin(2 - x)}{x}

\tt \:  =  \:  \lim_{x \to 0} \dfrac{2 \: cos2 \: sinx}{x}

\tt  \:  =  \: 2 \: cos2 \:  \lim_{x \to 0} \dfrac{sinx}{x}

 \tt \:  =  \: 2 \: cos2 \:  \times  \: 1

 \tt \:  =  \: 2 \: cos2

\boxed{ \green{ \bf \:Hence,  \lim_{x \to 0} \dfrac{sin(2 + x) - sin(2 - x)}{x}  = 2 \: cos2}}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\pink{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\purple{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x}  \:  -  \: 1}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\red{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x) }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\orange{{\tt \:\lim_{x\to 0} \: \dfrac{ {x}^{n}  -  {a}^{n} }{x \:  -  \: a} \:  =  \:  {na}^{ n- 1}  }}}}}} \\ \end{gathered}

Similar questions