Math, asked by lastwarning, 2 months ago

Find the limit

lim x → 2 (x² - 4) / (x³ - 4x² +4x)

Attachments:

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

The value of

\displaystyle  \sf{\lim_{x \to 2} \:  \frac{x^2-4}{ {x}^{3}  - 4 {x}^{2}  + 4x}}

EVALUATION

\displaystyle  \sf{\lim_{x \to 2} \:  \frac{x^2-4}{ {x}^{3}  - 4 {x}^{2}  + 4x}}

\displaystyle  \sf{ = \lim_{x \to 2} \:  \frac{x^2- {2}^{2} }{x( {x}^{2}  - 4 x  + 4)}}

\displaystyle  \sf{ = \lim_{x \to 2} \:  \frac{(x + 2)(x - 2) }{x {(x - 2)}^{2} }}

\displaystyle  \sf{ = \lim_{x \to 2} \:  \frac{(x + 2) }{x {(x - 2)}}}

 =  +  \infty

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. If A = { xЄ R : x2 – 3x = 0 } then write the number of subsets of A

https://brainly.in/question/36391942

Answered by darshit1634
0

Step-by-step explanation:

SOLUTION

TO DETERMINE

The value of

\displaystyle \sf{\lim_{x \to 2} \: \frac{x^2-4}{ {x}^{3} - 4 {x}^{2} + 4x}}

x→2

lim

x

3

−4x

2

+4x

x

2

−4

EVALUATION

\displaystyle \sf{\lim_{x \to 2} \: \frac{x^2-4}{ {x}^{3} - 4 {x}^{2} + 4x}}

x→2

lim

x

3

−4x

2

+4x

x

2

−4

\displaystyle \sf{ = \lim_{x \to 2} \: \frac{x^2- {2}^{2} }{x( {x}^{2} - 4 x + 4)}}=

x→2

lim

x(x

2

−4x+4)

x

2

−2

2

\displaystyle \sf{ = \lim_{x \to 2} \: \frac{(x + 2)(x - 2) }{x {(x - 2)}^{2} }}=

x→2

lim

x(x−2)

2

(x+2)(x−2)

\displaystyle \sf{ = \lim_{x \to 2} \: \frac{(x + 2) }{x {(x - 2)}}}=

x→2

lim

x(x−2)

(x+2)

= + \infty=+∞

━━━━━━━━━━━━━━━━

Similar questions