Find the limit of the function algebraically. limit as x approaches zero of quantity x squared plus two x divided by x to the fourth power.
Answers
Answered by
1
your question is ....
![\displaystyle\lim_{x\to\ 0}\frac{x^2+2x}{x^4} \displaystyle\lim_{x\to\ 0}\frac{x^2+2x}{x^4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto%5C+0%7D%5Cfrac%7Bx%5E2%2B2x%7D%7Bx%5E4%7D)
Let's check form of limit ,
put x = 0 in numerator and denominator
we get, 0/0 e.g., 0/0 is the form of limit.
now,![\displaystyle\lim_{x\to\ 0}\frac{x^2+2x}{x^4} \displaystyle\lim_{x\to\ 0}\frac{x^2+2x}{x^4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto%5C+0%7D%5Cfrac%7Bx%5E2%2B2x%7D%7Bx%5E4%7D)
=![\displaystyle\lim_{x\to 0}\frac{x(x+2)}{x.x^3} \displaystyle\lim_{x\to 0}\frac{x(x+2)}{x.x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto+0%7D%5Cfrac%7Bx%28x%2B2%29%7D%7Bx.x%5E3%7D)
=![\displaystyle\lim_{x\to 0}\frac{x+2}{x^3} \displaystyle\lim_{x\to 0}\frac{x+2}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto+0%7D%5Cfrac%7Bx%2B2%7D%7Bx%5E3%7D)
now, if we put x = 0, we get 2/0 = undefined
hence, limit doesn't exist
Let's check form of limit ,
put x = 0 in numerator and denominator
we get, 0/0 e.g., 0/0 is the form of limit.
now,
=
=
now, if we put x = 0, we get 2/0 = undefined
hence, limit doesn't exist
Similar questions